Ebru Kilicay, Ebru Erdal, Özge Kübra Karadag, Baki Hazer
{"title":"Evaluation of the antimicrobial and anticancer potential of a modified silver nanoparticle-impregnated carrier system.","authors":"Ebru Kilicay, Ebru Erdal, Özge Kübra Karadag, Baki Hazer","doi":"10.1080/02652048.2024.2443437","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop silver nanoparticles embedded in poly(ricinoleic acid)-poly(methyl methacrylate)-poly(ethylene glycol) (AgNPsPRici-PMMA-PEG) nanoparticles (NPs) containing caffeic acid (Caff) and tetracycline hydrochloride (TCH) for treating infections and cancer in bone defects. The block copolymers were synthesised via free radical polymerisation. NPs were prepared using the solvent evaporation method and characterised by FTIR, HNMR, SEM, DSC, TGA, and DLS. Drug loading (LE), encapsulation efficiency (EE), antimicrobial activity, cytotoxicity, and <i>in vitro</i> release studies were conducted. The NPs exhibited a size of 198 ± 2.89 nm, a narrow size distribution (PDI < 0.1), and a zeta potential of -27.5 ± 0.13 mV. The EE of Caff were 73 ± 0.09% w/w and 78 ± 0.32% w/w. Caff NPs showed prolonged release (69 ± 0.23% w/w), cytotoxicity with the cell viability of 66.85 ± 10.51% in SaOS cells, and antimicrobial zones ranging from 1.5 ± 0.3 to 4.2 ± 0.2 mm. TCH-Caff-AgNPsPRici-PMMA-PEG NPs exhibited promising therapeutic potential for infection and cancer treatment in bone defects.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-19"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2443437","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop silver nanoparticles embedded in poly(ricinoleic acid)-poly(methyl methacrylate)-poly(ethylene glycol) (AgNPsPRici-PMMA-PEG) nanoparticles (NPs) containing caffeic acid (Caff) and tetracycline hydrochloride (TCH) for treating infections and cancer in bone defects. The block copolymers were synthesised via free radical polymerisation. NPs were prepared using the solvent evaporation method and characterised by FTIR, HNMR, SEM, DSC, TGA, and DLS. Drug loading (LE), encapsulation efficiency (EE), antimicrobial activity, cytotoxicity, and in vitro release studies were conducted. The NPs exhibited a size of 198 ± 2.89 nm, a narrow size distribution (PDI < 0.1), and a zeta potential of -27.5 ± 0.13 mV. The EE of Caff were 73 ± 0.09% w/w and 78 ± 0.32% w/w. Caff NPs showed prolonged release (69 ± 0.23% w/w), cytotoxicity with the cell viability of 66.85 ± 10.51% in SaOS cells, and antimicrobial zones ranging from 1.5 ± 0.3 to 4.2 ± 0.2 mm. TCH-Caff-AgNPsPRici-PMMA-PEG NPs exhibited promising therapeutic potential for infection and cancer treatment in bone defects.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.