Michael M Tymko, Audrey Drapeau, Maria Augusta Vieira-Coelho, Lawrence Labrecque, Sarah Imhoff, Geoff B Coombs, Stephan Langevin, Marc Fortin, Nathalie Châteauvert, Philip N Ainslie, Patrice Brassard
{"title":"New evidence for baroreflex and respiratory chemoreflex mediated cerebral sympathetic activation in humans.","authors":"Michael M Tymko, Audrey Drapeau, Maria Augusta Vieira-Coelho, Lawrence Labrecque, Sarah Imhoff, Geoff B Coombs, Stephan Langevin, Marc Fortin, Nathalie Châteauvert, Philip N Ainslie, Patrice Brassard","doi":"10.1152/japplphysiol.00688.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is highly innervated by sympathetic nerve fibres; however, their physiological purpose is poorly understood. We hypothesized that unilateral cerebral norepinephrine (NE) spillover, an index of cerebral sympathetic nerve activity (SNA), would be elevated when engaging the baroreflex [via lower-body negative pressure (LBNP; -20 and -40 Torr)] and respiratory chemoreflexes [via carbon dioxide (CO<sub>2</sub>) administration (+8 Torr)], independently, and in combination. Twelve young and healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and internal jugular vein. Tritiated NE was infused through the participants' right forearm vein. Right internal jugular vein and internal carotid artery blood flow were measured using Duplex ultrasound. Unilateral cerebral NE spillover remained unchanged when only LBNP was applied (P=0.29), but increased with hypercapnia (P=0.035), and -40 Torr LBNP + CO<sub>2</sub> (P<0.01). There were no changes in total NE spillover during the LBNP and LBNP+CO<sub>2</sub> trials (both P=0.66), nor during CO<sub>2</sub> alone (P=0.13). No correlations were present between the increase in unilateral cerebral NE spillover during -40 Torr LBNP+CO<sub>2</sub> and reductions in internal carotid artery blood flow (P=0.56). These results indicate that baroreflex and respiratory chemoreflex stressors elevate cerebral SNA; however, the observed cerebral sympathetic activation has no impact on blood flow regulation in the internal carotid artery.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00688.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The brain is highly innervated by sympathetic nerve fibres; however, their physiological purpose is poorly understood. We hypothesized that unilateral cerebral norepinephrine (NE) spillover, an index of cerebral sympathetic nerve activity (SNA), would be elevated when engaging the baroreflex [via lower-body negative pressure (LBNP; -20 and -40 Torr)] and respiratory chemoreflexes [via carbon dioxide (CO2) administration (+8 Torr)], independently, and in combination. Twelve young and healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and internal jugular vein. Tritiated NE was infused through the participants' right forearm vein. Right internal jugular vein and internal carotid artery blood flow were measured using Duplex ultrasound. Unilateral cerebral NE spillover remained unchanged when only LBNP was applied (P=0.29), but increased with hypercapnia (P=0.035), and -40 Torr LBNP + CO2 (P<0.01). There were no changes in total NE spillover during the LBNP and LBNP+CO2 trials (both P=0.66), nor during CO2 alone (P=0.13). No correlations were present between the increase in unilateral cerebral NE spillover during -40 Torr LBNP+CO2 and reductions in internal carotid artery blood flow (P=0.56). These results indicate that baroreflex and respiratory chemoreflex stressors elevate cerebral SNA; however, the observed cerebral sympathetic activation has no impact on blood flow regulation in the internal carotid artery.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.