Signaling pathways mediating the induction of preharvest fruit drop in litchi.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2024-12-09 eCollection Date: 2024-01-01 DOI:10.3389/fpls.2024.1474657
Jun Wang, Wuqiang Ma, Fei Wang, Zidi He, Xiangyang Ye, Jiahui Deng, Minglei Zhao, Jianguo Li
{"title":"Signaling pathways mediating the induction of preharvest fruit drop in litchi.","authors":"Jun Wang, Wuqiang Ma, Fei Wang, Zidi He, Xiangyang Ye, Jiahui Deng, Minglei Zhao, Jianguo Li","doi":"10.3389/fpls.2024.1474657","DOIUrl":null,"url":null,"abstract":"<p><p>Certain litchi varieties, such as \"Nuomici\", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using \"Nuomici\" and \"Huaizhi\" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively. Our findings revealed that \"Nuomici\" experienced a substantial preharvest fruit drop, with a cumulative rate of 41.68%, significantly higher than the 1.44% observed in \"Huaizhi\". Cellulase activity assays showed a significant increase in cellulase activity in the abscission zone of \"Nuomici\", which coincided with the occurrence of preharvest fruit drop, in contrast to the relatively low levels in \"Huaizhi\". Phytohormone assays indicated lower indole-3-acetic acid content in the pericarp, aril, and seeds of \"Nuomici\" during the preharvest stage compared to \"Huaizhi\", coupled with higher abscisic acid levels in the seeds of \"Nuomici\". Furthermore, transcriptomic analysis identified 180, 282, 655, and 241 differentially expressed genes (DEGs) in the pericarp, aril, seed, and abscission zone, respectively, between the two cultivars during preharvest fruit drop. These DEGs are intricately involved in the generation and transmission of abscission signals from fruit tissues, encompassing <i>PIN</i>, <i>PIN-LIKES</i>, <i>LAX</i>, and <i>SAUR</i> genes related to polar auxin transport, ethylene diffusion, as well as perceiving these signals and activating the abscission process within the abscission zone. This includes <i>ACO</i> and <i>ILR</i> genes involved in hormone biosynthesis and signal transduction, regulation by WRKY, NAC, and bHLH transcription factors, AAO genes involved in response to reactive oxygen species, and EXP, EG, and PG genes involved in cell wall degradation in the abscission zone. Based on these comprehensive findings, we propose a model for preharvest fruit drop triggered by a series of molecular events in litchi, providing valuable insights into the complex mechanisms governing this phenomenon.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1474657"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1474657","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively. Our findings revealed that "Nuomici" experienced a substantial preharvest fruit drop, with a cumulative rate of 41.68%, significantly higher than the 1.44% observed in "Huaizhi". Cellulase activity assays showed a significant increase in cellulase activity in the abscission zone of "Nuomici", which coincided with the occurrence of preharvest fruit drop, in contrast to the relatively low levels in "Huaizhi". Phytohormone assays indicated lower indole-3-acetic acid content in the pericarp, aril, and seeds of "Nuomici" during the preharvest stage compared to "Huaizhi", coupled with higher abscisic acid levels in the seeds of "Nuomici". Furthermore, transcriptomic analysis identified 180, 282, 655, and 241 differentially expressed genes (DEGs) in the pericarp, aril, seed, and abscission zone, respectively, between the two cultivars during preharvest fruit drop. These DEGs are intricately involved in the generation and transmission of abscission signals from fruit tissues, encompassing PIN, PIN-LIKES, LAX, and SAUR genes related to polar auxin transport, ethylene diffusion, as well as perceiving these signals and activating the abscission process within the abscission zone. This includes ACO and ILR genes involved in hormone biosynthesis and signal transduction, regulation by WRKY, NAC, and bHLH transcription factors, AAO genes involved in response to reactive oxygen species, and EXP, EG, and PG genes involved in cell wall degradation in the abscission zone. Based on these comprehensive findings, we propose a model for preharvest fruit drop triggered by a series of molecular events in litchi, providing valuable insights into the complex mechanisms governing this phenomenon.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信