4-Hydroxychalcone attenuates AngII-induced cardiac remodeling and dysfunction via regulating PI3K/AKT pathway.

IF 4.3 2区 医学 Q1 PERIPHERAL VASCULAR DISEASE
Xiao Han, Qian-Qiu Zhu, Zhi Li, Jia-Kang He, Yan Sun, Qing-Hua Zhong, Sheng-Xing Tang, Yun-Long Zhang
{"title":"4-Hydroxychalcone attenuates AngII-induced cardiac remodeling and dysfunction via regulating PI3K/AKT pathway.","authors":"Xiao Han, Qian-Qiu Zhu, Zhi Li, Jia-Kang He, Yan Sun, Qing-Hua Zhong, Sheng-Xing Tang, Yun-Long Zhang","doi":"10.1038/s41440-024-02068-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac remodeling encompasses structural alterations such as hypertrophy, fibrosis, and dilatation, alongside numerous cellular and molecular functional aberrations, constituting a pivotal process in the advancement of heart failure (HF). 4-Hydroxychalcone (4-HCH) is a class of naturally occurring compounds with variable phenolic structures, and has demonstrated the preventive efficacy in hyperaldosteronism, inflammation and renal injury. However, the role of 4-HCH in the regulation of cardiac remodeling remains uncertain. A cardiac remodeling model was established in male C57BL/6 J mice via subcutaneous Ang II (1000 or 300 ng/kg/min) for 2 weeks. Mice were treated with 4-HCH (20 or 40 mg/kg/day) or vehicle control. Systolic blood pressure (SBP) was measured using a tail-cuff method, and echocardiography assessed cardiac function. Histopathological staining evaluated cardiomyocyte hypertrophy, fibrosis, inflammation, and superoxide production. Network pharmacology analysis identified potential core targets and pathways mediating the effects of 4-HCH. Expression of inflammatory cytokines and proteins related to hypertrophy, fibrosis, inflammation, and oxidative stress was assessed by quantitative real-time PCR (qPCR) and Western blotting. Our results indicated that 4-HCH significantly ameliorated Ang II-induced hypertension, cardiomyocyte hypertrophy, fibroblast activation, fibrosis, inflammation, superoxide production, and cardiac function. Network pharmacology analysis identified the PI3K-AKT pathway as a crucial mechanism underlying the effects of 4-HCH, with experimental verification demonstrating that it inhibits cardiac remodeling by downregulating this pathway and its downstream effectors, including mTOR/ERK, TGF-β/Smad2/3, NF-κB, and NOX1 independent of its blood pressure-lowering effects. These results reveal for the first time that 4-HCH alleviates cardiac remodeling, emphasizing its potential as a therapeutic agent for HF.</p>","PeriodicalId":13029,"journal":{"name":"Hypertension Research","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypertension Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41440-024-02068-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac remodeling encompasses structural alterations such as hypertrophy, fibrosis, and dilatation, alongside numerous cellular and molecular functional aberrations, constituting a pivotal process in the advancement of heart failure (HF). 4-Hydroxychalcone (4-HCH) is a class of naturally occurring compounds with variable phenolic structures, and has demonstrated the preventive efficacy in hyperaldosteronism, inflammation and renal injury. However, the role of 4-HCH in the regulation of cardiac remodeling remains uncertain. A cardiac remodeling model was established in male C57BL/6 J mice via subcutaneous Ang II (1000 or 300 ng/kg/min) for 2 weeks. Mice were treated with 4-HCH (20 or 40 mg/kg/day) or vehicle control. Systolic blood pressure (SBP) was measured using a tail-cuff method, and echocardiography assessed cardiac function. Histopathological staining evaluated cardiomyocyte hypertrophy, fibrosis, inflammation, and superoxide production. Network pharmacology analysis identified potential core targets and pathways mediating the effects of 4-HCH. Expression of inflammatory cytokines and proteins related to hypertrophy, fibrosis, inflammation, and oxidative stress was assessed by quantitative real-time PCR (qPCR) and Western blotting. Our results indicated that 4-HCH significantly ameliorated Ang II-induced hypertension, cardiomyocyte hypertrophy, fibroblast activation, fibrosis, inflammation, superoxide production, and cardiac function. Network pharmacology analysis identified the PI3K-AKT pathway as a crucial mechanism underlying the effects of 4-HCH, with experimental verification demonstrating that it inhibits cardiac remodeling by downregulating this pathway and its downstream effectors, including mTOR/ERK, TGF-β/Smad2/3, NF-κB, and NOX1 independent of its blood pressure-lowering effects. These results reveal for the first time that 4-HCH alleviates cardiac remodeling, emphasizing its potential as a therapeutic agent for HF.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Hypertension Research
Hypertension Research 医学-外周血管病
CiteScore
7.40
自引率
16.70%
发文量
249
审稿时长
3-8 weeks
期刊介绍: Hypertension Research is the official publication of the Japanese Society of Hypertension. The journal publishes papers reporting original clinical and experimental research that contribute to the advancement of knowledge in the field of hypertension and related cardiovascular diseases. The journal publishes Review Articles, Articles, Correspondence and Comments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信