CAT-PMSF improves phylogenetic modelling under maximum likelihood and resolves Tardigrada within Panarthropoda, as the sister of Arthropoda plus Onychophora.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Mattia Giacomelli, Matteo Vecchi, Roberto Guidetti, Lorena Rebecchi, Philip C J Donoghue, Jesus Lozano-Fernandez, Davide Pisani
{"title":"CAT-PMSF improves phylogenetic modelling under maximum likelihood and resolves Tardigrada within Panarthropoda, as the sister of Arthropoda plus Onychophora.","authors":"Mattia Giacomelli, Matteo Vecchi, Roberto Guidetti, Lorena Rebecchi, Philip C J Donoghue, Jesus Lozano-Fernandez, Davide Pisani","doi":"10.1093/gbe/evae273","DOIUrl":null,"url":null,"abstract":"<p><p>Tardigrada, the water bears, are microscopic animals with walking appendages, that are members of Ecdysozoa, the clade of moulting animals that also includes Nematoda (round worms), Nematomorpha (horsehair worms), Priapulida (penis worms), Kinorhyncha (mud dragons), Loricifera (loricated animals), Arthropoda (insects, spiders centipedes, crustaceans and their allies) and Onychophora (velvet worms). The phylogenetic relationships within Ecdysozoa are still unclear, with analyses of molecular and morphological data yielding incongruent results. Here we use CAT-posterior mean site frequencies (CAT-PMSF), a new method to export dataset-specific mixture models (CAT-Poisson and CAT-GTR) parameterized using Bayesian methods to maximum likelihood software. We developed new maximum-likelihood based model adequacy tests using parametric bootstrap and show that CAT-PMSF describes across-site compositional heterogeneity better than other across-site compositionally heterogeneous models currently implemented in maximum likelihood software. CAT-PMSF suggests that tardigrades are members of Panarthropoda, a lineage including also Arthropoda and Onychophora. Within Panarthropoda, our results favour Tardigrada sister to Onychophora plus Arthropoda (the Lobopodia hypothesis). Our results illustrate the power of CAT-PMSF to model across-site compositionally heterogeneous datasets in the maximum likelihood framework and clarify the relationships of Tardigrada and the Ecdysozoa.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae273","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tardigrada, the water bears, are microscopic animals with walking appendages, that are members of Ecdysozoa, the clade of moulting animals that also includes Nematoda (round worms), Nematomorpha (horsehair worms), Priapulida (penis worms), Kinorhyncha (mud dragons), Loricifera (loricated animals), Arthropoda (insects, spiders centipedes, crustaceans and their allies) and Onychophora (velvet worms). The phylogenetic relationships within Ecdysozoa are still unclear, with analyses of molecular and morphological data yielding incongruent results. Here we use CAT-posterior mean site frequencies (CAT-PMSF), a new method to export dataset-specific mixture models (CAT-Poisson and CAT-GTR) parameterized using Bayesian methods to maximum likelihood software. We developed new maximum-likelihood based model adequacy tests using parametric bootstrap and show that CAT-PMSF describes across-site compositional heterogeneity better than other across-site compositionally heterogeneous models currently implemented in maximum likelihood software. CAT-PMSF suggests that tardigrades are members of Panarthropoda, a lineage including also Arthropoda and Onychophora. Within Panarthropoda, our results favour Tardigrada sister to Onychophora plus Arthropoda (the Lobopodia hypothesis). Our results illustrate the power of CAT-PMSF to model across-site compositionally heterogeneous datasets in the maximum likelihood framework and clarify the relationships of Tardigrada and the Ecdysozoa.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信