{"title":"Discrimination of leaf diseases in Maize/Soybean intercropping system based on hyperspectral imaging.","authors":"Xin Liu, Kaixin Meng, Kaixing Zhang, Wujie Yang, Jiutao Yang, Lingyang Feng, Haoran Gong, Chang'an Zhou","doi":"10.3389/fpls.2024.1434163","DOIUrl":null,"url":null,"abstract":"<p><p>In order to achieve precise discrimination of leaf diseases in the Maize/Soybean intercropping system, i.e. leaf spot disease, rust disease, mixed leaf diseases, this study utilized hyperspectral imaging and deep learning algorithms for the classification of diseased leaves of maize and soybean. In the experiments, hyperspectral imaging equipment was used to collect hyperspectral images of leaves, and the regions of interest were extracted within the spectral range of 400 to 1000 nm. These regions included one or more infected areas on the leaves to obtain hyperspectral data. This approach aimed to enhance the accurate discrimination of different types of diseases, providing more effective technical support for the detection and control of crop diseases. The preprocessing of hyperspectral data involved four methods: Savitzky-Golay (SG), Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC) and 1st Derivative (1st Der). The 1st Der was found to be the optimal preprocessing method for hyperspectral data of maize and soybean diseases. Competitive Adaptive Reweighted Sampling (CARS), Successive Projections Algorithm (SPA) and Principal Component Analysis (PCA) were employed for feature extraction on the optimal preprocessed data. The Support Vector Machines (SVM), Bidirectional Long Short-Term Memory Network (BiLSTM) and Dung Beetle Optimization-Bidirectional Long Short-Term Memory Network (DBO-BiLSTM) were established for the discrimination of maize and soybean diseases. Comparative analysis indicated that, in the classification of maize and soybean diseases, the DBO-BiLSTM model based on the CARS extraction method (1st Der-CARS-DBO-BiLSTM) demonstrated the highest classification rate, reaching 98.7% on the test set. The research findings suggest that integrating hyperspectral imaging with both traditional and deep learning methods is a viable and effective approach for classifying diseases in the intercropping model of maize and soybean. These results offer a novel method and a theoretical foundation for the non-invasive, precise, and efficient identification of diseases in the intercropping model of maize and soybean, carrying positive implications for agricultural production.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1434163"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663666/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1434163","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In order to achieve precise discrimination of leaf diseases in the Maize/Soybean intercropping system, i.e. leaf spot disease, rust disease, mixed leaf diseases, this study utilized hyperspectral imaging and deep learning algorithms for the classification of diseased leaves of maize and soybean. In the experiments, hyperspectral imaging equipment was used to collect hyperspectral images of leaves, and the regions of interest were extracted within the spectral range of 400 to 1000 nm. These regions included one or more infected areas on the leaves to obtain hyperspectral data. This approach aimed to enhance the accurate discrimination of different types of diseases, providing more effective technical support for the detection and control of crop diseases. The preprocessing of hyperspectral data involved four methods: Savitzky-Golay (SG), Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC) and 1st Derivative (1st Der). The 1st Der was found to be the optimal preprocessing method for hyperspectral data of maize and soybean diseases. Competitive Adaptive Reweighted Sampling (CARS), Successive Projections Algorithm (SPA) and Principal Component Analysis (PCA) were employed for feature extraction on the optimal preprocessed data. The Support Vector Machines (SVM), Bidirectional Long Short-Term Memory Network (BiLSTM) and Dung Beetle Optimization-Bidirectional Long Short-Term Memory Network (DBO-BiLSTM) were established for the discrimination of maize and soybean diseases. Comparative analysis indicated that, in the classification of maize and soybean diseases, the DBO-BiLSTM model based on the CARS extraction method (1st Der-CARS-DBO-BiLSTM) demonstrated the highest classification rate, reaching 98.7% on the test set. The research findings suggest that integrating hyperspectral imaging with both traditional and deep learning methods is a viable and effective approach for classifying diseases in the intercropping model of maize and soybean. These results offer a novel method and a theoretical foundation for the non-invasive, precise, and efficient identification of diseases in the intercropping model of maize and soybean, carrying positive implications for agricultural production.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.