Dual suppression of Glossina pallidipes using entomopathogenic fungal-based biopesticides and sterile insect technique.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2024-12-09 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1472324
Fidelis L O Ombura, Adly M M Abd-Alla, Komivi S Akutse, Steven Runo, Paul O Mireji, Rosemary Bateta, Joseck E Otiwi, Inusa J Ajene, Fathiya M Khamis
{"title":"Dual suppression of <i>Glossina pallidipes</i> using entomopathogenic fungal-based biopesticides and sterile insect technique.","authors":"Fidelis L O Ombura, Adly M M Abd-Alla, Komivi S Akutse, Steven Runo, Paul O Mireji, Rosemary Bateta, Joseck E Otiwi, Inusa J Ajene, Fathiya M Khamis","doi":"10.3389/fmicb.2024.1472324","DOIUrl":null,"url":null,"abstract":"<p><p>Tsetse flies and trypanosomosis significantly impact bovine production and human health in sub-Saharan Africa, exacerbating underdevelopment, malnutrition, and poverty. Despite various control strategies, long-term success has been limited. This study evaluates the combined use of entomopathogenic fungi (EPF) and the sterile insect technique (SIT) to combat tsetse flies. Eleven EPF isolates were tested against teneral males of <i>Glossina pallidipes</i>, focusing on mortality rates, radial growth, and impacts on fly fitness. Temperature effects on conidial growth, sporulation, and spore yield of SIT-compatible/tolerant strains were also assessed. The fungal isolates significantly influenced mortality rates in both unirradiated and irradiated (SIT-treated) males (<i>p</i> < 0.0001). <i>Metarhizium anisopliae</i> strains ICIPE 20, ICIPE 32, ICIPE 41, ICIPE 62, ICIPE 78, and <i>Beauveria bassiana</i> ICIPE 603 showed higher SIT compatibility/tolerance with LT<sub>50</sub> values of 11-30 days, compared to other more virulent isolates with LT<sub>50</sub> values of 4-9 days. Temperature significantly affected the radial growth of SIT-compatible EPF strains (<i>p</i> < 0.0001), with <i>M. anisopliae</i> ICIPE 78 exhibiting the fastest conidia growth at 25°C. Spore yield varied significantly across temperatures (15-40°C), and the thermal range for conidia germination of SIT-compatible strains was 8.1-45.4°C, with an optimal range of 26.7-31.1°C. Moreover, infected unirradiated females and irradiated males (donors) successfully transmitted conidia to untreated flies (receivers) without significant differences in survival rates (<i>p</i> = 0.6438) and no observed sex dimorphism. Our findings highlight the potential of combining EPF and SIT as a novel dual approach that could effectively and synergistically suppress tsetse fly populations.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1472324"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1472324","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tsetse flies and trypanosomosis significantly impact bovine production and human health in sub-Saharan Africa, exacerbating underdevelopment, malnutrition, and poverty. Despite various control strategies, long-term success has been limited. This study evaluates the combined use of entomopathogenic fungi (EPF) and the sterile insect technique (SIT) to combat tsetse flies. Eleven EPF isolates were tested against teneral males of Glossina pallidipes, focusing on mortality rates, radial growth, and impacts on fly fitness. Temperature effects on conidial growth, sporulation, and spore yield of SIT-compatible/tolerant strains were also assessed. The fungal isolates significantly influenced mortality rates in both unirradiated and irradiated (SIT-treated) males (p < 0.0001). Metarhizium anisopliae strains ICIPE 20, ICIPE 32, ICIPE 41, ICIPE 62, ICIPE 78, and Beauveria bassiana ICIPE 603 showed higher SIT compatibility/tolerance with LT50 values of 11-30 days, compared to other more virulent isolates with LT50 values of 4-9 days. Temperature significantly affected the radial growth of SIT-compatible EPF strains (p < 0.0001), with M. anisopliae ICIPE 78 exhibiting the fastest conidia growth at 25°C. Spore yield varied significantly across temperatures (15-40°C), and the thermal range for conidia germination of SIT-compatible strains was 8.1-45.4°C, with an optimal range of 26.7-31.1°C. Moreover, infected unirradiated females and irradiated males (donors) successfully transmitted conidia to untreated flies (receivers) without significant differences in survival rates (p = 0.6438) and no observed sex dimorphism. Our findings highlight the potential of combining EPF and SIT as a novel dual approach that could effectively and synergistically suppress tsetse fly populations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信