{"title":"Eruptive Insect Outbreaks from Endemic Populations Under Climate Change.","authors":"Micah Brush, Mark A Lewis","doi":"10.1007/s11538-024-01399-6","DOIUrl":null,"url":null,"abstract":"<p><p>Insects, especially forest pests, are frequently characterized by eruptive dynamics. These types of species can stay at low, endemic population densities for extended periods of time before erupting in large-scale outbreaks. We here present a mechanistic model of these dynamics for mountain pine beetle. This extends a recent model that describes key aspects of mountain pine beetle biology coupled with a forest growth model by additionally including a fraction of low-vigor trees. These low-vigor trees, which may represent hosts with weakened defenses from drought, disease, other bark beetles, or other stressors, give rise to an endemic equilibrium in biologically plausible parameter ranges. The mechanistic nature of the model allows us to study how each model parameter affects the existence and size of the endemic equilibrium. We then show that under certain parameter shifts that are more likely under climate change, the endemic equilibrium can disappear entirely, leading to an outbreak.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 1","pages":"16"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01399-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insects, especially forest pests, are frequently characterized by eruptive dynamics. These types of species can stay at low, endemic population densities for extended periods of time before erupting in large-scale outbreaks. We here present a mechanistic model of these dynamics for mountain pine beetle. This extends a recent model that describes key aspects of mountain pine beetle biology coupled with a forest growth model by additionally including a fraction of low-vigor trees. These low-vigor trees, which may represent hosts with weakened defenses from drought, disease, other bark beetles, or other stressors, give rise to an endemic equilibrium in biologically plausible parameter ranges. The mechanistic nature of the model allows us to study how each model parameter affects the existence and size of the endemic equilibrium. We then show that under certain parameter shifts that are more likely under climate change, the endemic equilibrium can disappear entirely, leading to an outbreak.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.