Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation.

IF 2.2 4区 化学 Q2 CHEMISTRY, ORGANIC
Beilstein Journal of Organic Chemistry Pub Date : 2024-12-17 eCollection Date: 2024-01-01 DOI:10.3762/bjoc.20.271
Perry van der Heide, Michele Retini, Fabiola Fanini, Giovanni Piersanti, Francesco Secci, Daniele Mazzarella, Timothy Noël, Alberto Luridiana
{"title":"Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation.","authors":"Perry van der Heide, Michele Retini, Fabiola Fanini, Giovanni Piersanti, Francesco Secci, Daniele Mazzarella, Timothy Noël, Alberto Luridiana","doi":"10.3762/bjoc.20.271","DOIUrl":null,"url":null,"abstract":"<p><p>The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation. In this research, we present a metal-free strategy for the photochemical alkylation of dehydroalanine derivatives. Upon abstraction of a hydride from tris(trimethylsilyl)silane (TTMS) by an excited benzophenone derivative, the formed silane radical can undergo a XAT with an alkyl bromide to generate an alkyl radical. Consequently, the alkyl radical undergoes a Giese-type reaction with the Dha derivative, forming a new C(sp<sup>3</sup>)-C(sp<sup>3</sup>) bond. The reaction can be performed in a phosphate-buffered saline (PBS) solution and shows post-functionalization prospects through pathways involving classical peptide chemistry.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"20 ","pages":"3274-3280"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.20.271","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation. In this research, we present a metal-free strategy for the photochemical alkylation of dehydroalanine derivatives. Upon abstraction of a hydride from tris(trimethylsilyl)silane (TTMS) by an excited benzophenone derivative, the formed silane radical can undergo a XAT with an alkyl bromide to generate an alkyl radical. Consequently, the alkyl radical undergoes a Giese-type reaction with the Dha derivative, forming a new C(sp3)-C(sp3) bond. The reaction can be performed in a phosphate-buffered saline (PBS) solution and shows post-functionalization prospects through pathways involving classical peptide chemistry.

硅烷介导烷基溴活化脱氢丙氨酸衍生物的吉斯型烷基化反应。
随着生物偶联疗法的日益普及,人们对肽支架的后期功能化(LSF)越来越感兴趣。α,β-不饱和氨基酸如脱氢丙氨酸(Dha)衍生物已成为特别有用的结构,因为缺乏电子的烯烃部分可以参与后期功能化反应,如吉斯型反应。像有机卤化物这样便宜且广泛使用的构建块可以通过光诱导硅烷介导的卤素原子转移(XAT)转化为烷基自由基,从而提供了一种温和而直接的烷基化方法。在本研究中,我们提出了一种脱氢丙氨酸衍生物的无金属光化学烷基化策略。由激发二苯甲酮衍生物从三(三甲基硅基)硅烷(TTMS)中提取氢化物后,形成的硅烷自由基可与烷基溴发生XAT反应生成烷基自由基。因此,烷基自由基与Dha衍生物发生吉斯型反应,形成新的C(sp3)-C(sp3)键。该反应可以在磷酸盐缓冲盐水(PBS)溶液中进行,并通过涉及经典肽化学的途径显示出功能化后的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
3.70%
发文量
167
审稿时长
1.4 months
期刊介绍: The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry. The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信