Tian Zhao, Tianci Liu, Tao Li, Shengcun Chen, Lupeng Wang, Man Zhang
{"title":"The expression of glycolysis-related proteins in urine significantly increases after running.","authors":"Tian Zhao, Tianci Liu, Tao Li, Shengcun Chen, Lupeng Wang, Man Zhang","doi":"10.3389/fphys.2024.1481741","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Glucose metabolism is the main way in which cells obtain energy during exercise and plays an important role in exercise. The purpose of this study was to explore the changes in the expression of glucose metabolism-related proteins in urine after running, and finally applied to the monitoring of running training.</p><p><strong>Methods: </strong>Urine samples were collected before and after running, and urine proteomics information was collected to explore the expression of proteins in the urine using LC-MS/MS in DDA mode and DIA mode. Receiver operating characteristic (ROC) curve was drawn to evaluate the value of target proteins in monitoring running training.</p><p><strong>Results: </strong>A total of 140 proteins were identified using LC-MS/MS in DDA mode, of which 49 urine proteins showed increased expression after running. KEGG analysis revealed that glucose metabolism-related proteins are mainly concentrated in glycolysis. There were six glycolysis-related proteins, among which urine proteins PKM, TPI1, ENO1 and LDHB were significantly increased after running (<i>P</i> < 0.05). This changes in urine proteins PKM, TPI1, ENO1 and LDHB were further verified by the results of LC-MS/MS in DIA mode. The concentrations of the urine proteins TPI1, ENO1 and LDHB showed a significant linear relationship with PKM. ROC curve analysis showed that PKM, TPI1, ENO1 and LDHB proteins in urine had good monitoring values for running training.</p><p><strong>Conclusion: </strong>The expression of glycolysis-related proteins PKM, TPI1, ENO1 and LDHB in urine was significantly increased after running, which may be applied to the monitoring of running training.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1481741"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1481741","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Glucose metabolism is the main way in which cells obtain energy during exercise and plays an important role in exercise. The purpose of this study was to explore the changes in the expression of glucose metabolism-related proteins in urine after running, and finally applied to the monitoring of running training.
Methods: Urine samples were collected before and after running, and urine proteomics information was collected to explore the expression of proteins in the urine using LC-MS/MS in DDA mode and DIA mode. Receiver operating characteristic (ROC) curve was drawn to evaluate the value of target proteins in monitoring running training.
Results: A total of 140 proteins were identified using LC-MS/MS in DDA mode, of which 49 urine proteins showed increased expression after running. KEGG analysis revealed that glucose metabolism-related proteins are mainly concentrated in glycolysis. There were six glycolysis-related proteins, among which urine proteins PKM, TPI1, ENO1 and LDHB were significantly increased after running (P < 0.05). This changes in urine proteins PKM, TPI1, ENO1 and LDHB were further verified by the results of LC-MS/MS in DIA mode. The concentrations of the urine proteins TPI1, ENO1 and LDHB showed a significant linear relationship with PKM. ROC curve analysis showed that PKM, TPI1, ENO1 and LDHB proteins in urine had good monitoring values for running training.
Conclusion: The expression of glycolysis-related proteins PKM, TPI1, ENO1 and LDHB in urine was significantly increased after running, which may be applied to the monitoring of running training.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.