Quorum sensing inhibition evaluation method: An experiment-based microbiology laboratory course.

IF 1.2 4区 教育学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ângelo Luís, Fernanda Domingues
{"title":"Quorum sensing inhibition evaluation method: An experiment-based microbiology laboratory course.","authors":"Ângelo Luís, Fernanda Domingues","doi":"10.1002/bmb.21874","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria have developed a cell-to-cell communication system called quorum sensing (QS), allowing them to regulate group behavior and synchronize the expression of virulence factors, responsible for increasing their infection capacity and resistance to antimicrobials. Although the control of microbial infections through the inhibition of microbial growth has traditionally been the basis of antimicrobial chemotherapy, the emergence of antimicrobial resistance has led to the search for new microbial control strategies, namely through the inhibition of QS. Among the agents studied to inhibit this bacterial communication are essential oils (EO), which are considered very effective QS inhibitors. When searching for new QS inhibitor agents, it is essential to have a cheap and easy-to-perform method that allows the evaluation of this activity. Chromobacterium violaceum is a Gram-negative bacterium that has been widely used as a model organism in QS research laboratories because it produces the violet-colored pigment violacein, which is regulated by QS and is an easily observable and quantifiable characteristic marker. The objective of this work is to describe a method to evaluate the inhibition of the QS using Cymbopogon martinii EO as a potential inhibitory agent for violacein production by C. violaceum, which can be applied in the Microbiology laboratory course as a part of the programs of several science degrees. The proposed method is inexpensive and does not require specific equipment, enabling its easy implementation by the laboratory team and professors.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/bmb.21874","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria have developed a cell-to-cell communication system called quorum sensing (QS), allowing them to regulate group behavior and synchronize the expression of virulence factors, responsible for increasing their infection capacity and resistance to antimicrobials. Although the control of microbial infections through the inhibition of microbial growth has traditionally been the basis of antimicrobial chemotherapy, the emergence of antimicrobial resistance has led to the search for new microbial control strategies, namely through the inhibition of QS. Among the agents studied to inhibit this bacterial communication are essential oils (EO), which are considered very effective QS inhibitors. When searching for new QS inhibitor agents, it is essential to have a cheap and easy-to-perform method that allows the evaluation of this activity. Chromobacterium violaceum is a Gram-negative bacterium that has been widely used as a model organism in QS research laboratories because it produces the violet-colored pigment violacein, which is regulated by QS and is an easily observable and quantifiable characteristic marker. The objective of this work is to describe a method to evaluate the inhibition of the QS using Cymbopogon martinii EO as a potential inhibitory agent for violacein production by C. violaceum, which can be applied in the Microbiology laboratory course as a part of the programs of several science degrees. The proposed method is inexpensive and does not require specific equipment, enabling its easy implementation by the laboratory team and professors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry and Molecular Biology Education
Biochemistry and Molecular Biology Education 生物-生化与分子生物学
CiteScore
2.60
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including: Innovative techniques in teaching and learning. New pedagogical approaches. Research in biochemistry and molecular biology education. Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc. Historical Reviews describing "Paths to Discovery". Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics. Reviews of relevant textbooks, software, and websites. Descriptions of software for educational use. Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信