Harmful algal bloom prediction using empirical dynamic modeling.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Özlem Baydaroğlu
{"title":"Harmful algal bloom prediction using empirical dynamic modeling.","authors":"Özlem Baydaroğlu","doi":"10.1016/j.scitotenv.2024.178185","DOIUrl":null,"url":null,"abstract":"<p><p>Harmful Algal Blooms (HABs) can originate from a variety of reasons, including water pollution coming from agriculture, effluent from treatment plants, sewage system leaks, pH and light levels, and the consequences of climate change. In recent years, HAB events have become a serious environmental problem, paralleling population growth, agricultural development, increasing air temperatures, and declining precipitation. Hence, it is crucial to identify the mechanisms responsible for the formation of HABs, accurately assess their short- and long-term impacts, and quantify their variations based on climate projections for developing accurate action plans and effectively managing resources. From this point of view, this present study utilizes empirical dynamic modeling (EDM) to predict chlorophyll-a concentration of Lake Erie. This method is characterized by its nonlinearity and nonparametric nature. EDM has a key advantage in that it overcomes the limitations of traditional statistical modeling by utilizing data-driven attractor reconstruction. Chlorophyll-a is a critical parameter in the prediction of HAB events. Lake Erie is an inland water body that experiences frequent HAB phenomena due to its location. The EDM demonstrated exceptional performance, and these findings imply that the EDM model can effectively capture the underlying dynamics of chlorophyll-a changes.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"959 ","pages":"178185"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178185","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Harmful Algal Blooms (HABs) can originate from a variety of reasons, including water pollution coming from agriculture, effluent from treatment plants, sewage system leaks, pH and light levels, and the consequences of climate change. In recent years, HAB events have become a serious environmental problem, paralleling population growth, agricultural development, increasing air temperatures, and declining precipitation. Hence, it is crucial to identify the mechanisms responsible for the formation of HABs, accurately assess their short- and long-term impacts, and quantify their variations based on climate projections for developing accurate action plans and effectively managing resources. From this point of view, this present study utilizes empirical dynamic modeling (EDM) to predict chlorophyll-a concentration of Lake Erie. This method is characterized by its nonlinearity and nonparametric nature. EDM has a key advantage in that it overcomes the limitations of traditional statistical modeling by utilizing data-driven attractor reconstruction. Chlorophyll-a is a critical parameter in the prediction of HAB events. Lake Erie is an inland water body that experiences frequent HAB phenomena due to its location. The EDM demonstrated exceptional performance, and these findings imply that the EDM model can effectively capture the underlying dynamics of chlorophyll-a changes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信