Mesoporous NiFe2O4@g-C3N4-based p-n Heterostructures for Boosting Solar-Driven Photocatalytic Dye Degradation and Hydrogen Evolution.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Suma Das, Swapnomoy Pramanik, Ranjith G Nair, Avijit Chowdhury
{"title":"Mesoporous NiFe2O4@g-C3N4-based p-n Heterostructures for Boosting Solar-Driven Photocatalytic Dye Degradation and Hydrogen Evolution.","authors":"Suma Das, Swapnomoy Pramanik, Ranjith G Nair, Avijit Chowdhury","doi":"10.1002/asia.202401402","DOIUrl":null,"url":null,"abstract":"<p><p>Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFe2O4@g-C3N4 heterojunctions were developed by embedding p-type NiFe2O4 nanoparticles (NPs) within n-type porous ultrathin g-C3N4 (p-uCN) nanosheets. The optimized NiFe2O4@g-C3N4, loaded with 20wt% magnetic counterparts, exhibits exceptional photocatalytic methylene blue degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.062 and 0.161 min⁻¹, respectively. These performance metrics are 1.3 and 2.55 fold higher than p-uCN (0.048 and 0.063 min⁻¹) and 51.6 and 17.4 fold higher than NiFO (0.0012 and 0.009 min⁻¹). Notably, mp-NiF@uCN-20% with 1.0 wt% of Pt loading achieves the highest H2 evolution rate of 2294 µmolg⁻¹h⁻¹, which is 3.72, 1.52, and 13.49 times higher than that of pure CN, p-uCN, and NiFO, respectively. The enhanced performance is corroborated by increased surface area, improved separation of charge carriers, and effective charge transfer, which enables simultaneous reduction and oxidation processes. Further, the magnetic nanocomposite exhibits remarkable stability even after multiple runs, indicating their reusability. The experimental findings emphasize the importance of p-n heterojunctions, interfacial band alignment, and mesoporous architecture in enhancing the photocatalytic efficiency of NiFe2O4@g-C3N4 nanocomposites.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401402"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401402","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFe2O4@g-C3N4 heterojunctions were developed by embedding p-type NiFe2O4 nanoparticles (NPs) within n-type porous ultrathin g-C3N4 (p-uCN) nanosheets. The optimized NiFe2O4@g-C3N4, loaded with 20wt% magnetic counterparts, exhibits exceptional photocatalytic methylene blue degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.062 and 0.161 min⁻¹, respectively. These performance metrics are 1.3 and 2.55 fold higher than p-uCN (0.048 and 0.063 min⁻¹) and 51.6 and 17.4 fold higher than NiFO (0.0012 and 0.009 min⁻¹). Notably, mp-NiF@uCN-20% with 1.0 wt% of Pt loading achieves the highest H2 evolution rate of 2294 µmolg⁻¹h⁻¹, which is 3.72, 1.52, and 13.49 times higher than that of pure CN, p-uCN, and NiFO, respectively. The enhanced performance is corroborated by increased surface area, improved separation of charge carriers, and effective charge transfer, which enables simultaneous reduction and oxidation processes. Further, the magnetic nanocomposite exhibits remarkable stability even after multiple runs, indicating their reusability. The experimental findings emphasize the importance of p-n heterojunctions, interfacial band alignment, and mesoporous architecture in enhancing the photocatalytic efficiency of NiFe2O4@g-C3N4 nanocomposites.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信