Zhonghan Li, Fengxia Yang, Bingjun Han, Ran Zhao, Ming Yang, Keqiang Zhang
{"title":"Vermicomposting significantly reduced antibiotic resistance genes in cow manure even under high tetracycline concentrations.","authors":"Zhonghan Li, Fengxia Yang, Bingjun Han, Ran Zhao, Ming Yang, Keqiang Zhang","doi":"10.1016/j.biortech.2024.132002","DOIUrl":null,"url":null,"abstract":"<p><p>Minimizing antibiotic resistance genes (ARGs) in livestock manure is crucial for curbing ARG dissemination. Vermicomposting can eliminate ARGs, but the effect of residual antibiotics on its reduction efficacy remains unclear. Herein, Eisenia foetida was employed to convert cow manure with varying concentrations of tetracycline (i.e., 0, 10, 100 mg/kg), aiming to explore the impact of tetracycline on ARG fate during vermicomposting for 35 days. Results showed that the total ARG abundance in vermicomposting (0.05 copies/16S rRNA copies) was significantly lower than that in natural composting (0.06 copies/16S rRNA copies) (p < 0.05). Notably, exposure to tetracycline increased total ARG abundance (p < 0.05) and stimulated microbial succession during vermicomposting, with some ARGs increasing and others decreasing. But ARGs removal in vermicomposting was still higher even under tetracycline stress than that in natural composting. Overall, vermicomposting is an effective method for reducing ARGs in cow manure even at high tetracycline levels.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132002"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.132002","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Minimizing antibiotic resistance genes (ARGs) in livestock manure is crucial for curbing ARG dissemination. Vermicomposting can eliminate ARGs, but the effect of residual antibiotics on its reduction efficacy remains unclear. Herein, Eisenia foetida was employed to convert cow manure with varying concentrations of tetracycline (i.e., 0, 10, 100 mg/kg), aiming to explore the impact of tetracycline on ARG fate during vermicomposting for 35 days. Results showed that the total ARG abundance in vermicomposting (0.05 copies/16S rRNA copies) was significantly lower than that in natural composting (0.06 copies/16S rRNA copies) (p < 0.05). Notably, exposure to tetracycline increased total ARG abundance (p < 0.05) and stimulated microbial succession during vermicomposting, with some ARGs increasing and others decreasing. But ARGs removal in vermicomposting was still higher even under tetracycline stress than that in natural composting. Overall, vermicomposting is an effective method for reducing ARGs in cow manure even at high tetracycline levels.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.