A genome-scale metabolic reconstruction provides insight into the metabolism of the thermophilic bacterium Rhodothermus marinus.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Thordis Kristjansdottir, Gudmundur O Hreggvidsson, Elisabet Eik Gudmundsdottir, Snaedis H Bjornsdottir, Olafur H Fridjonsson, Sigmar Karl Stefansson, Eva Nordberg Karlsson, Justine Vanhalst, Birkir Reynisson, Steinn Gudmundsson
{"title":"A genome-scale metabolic reconstruction provides insight into the metabolism of the thermophilic bacterium Rhodothermus marinus.","authors":"Thordis Kristjansdottir, Gudmundur O Hreggvidsson, Elisabet Eik Gudmundsdottir, Snaedis H Bjornsdottir, Olafur H Fridjonsson, Sigmar Karl Stefansson, Eva Nordberg Karlsson, Justine Vanhalst, Birkir Reynisson, Steinn Gudmundsson","doi":"10.1093/femsec/fiae167","DOIUrl":null,"url":null,"abstract":"<p><p>The thermophilic bacterium Rhodothermus marinus has mainly been studied for its thermostable enzymes. More recently, the potential of using the species as a cell factory and in biorefinery platforms has been explored, due to the elevated growth temperature, native production of compounds such as carotenoids and exopolysaccharides, the ability to grow on a wide range of carbon sources including polysaccharides, and available genetic tools. A comprehensive understanding of the metabolism of cell factories is important. Here, we report a genome-scale metabolic model of R. marinus DSM 4252T. Moreover, the genome of the genetically amenable R. marinus ISCaR-493 was sequenced and the analysis of the core genome indicated that the model could be used for both strains. Bioreactor growth data were obtained, used for constraining the model and the predicted and experimental growth rates were compared. The model correctly predicted the growth rates of both strains. During the reconstruction process, different aspects of the R. marinus metabolism were reviewed and subsequently, both cell densities and carotenoid production were investigated for strain ISCaR-493 under different growth conditions. Additionally, the dxs gene, which was not found in the R. marinus genomes, from Thermus thermophilus was cloned on a shuttle vector into strain ISCaR-493 resulting in a higher yield of carotenoids.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae167","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The thermophilic bacterium Rhodothermus marinus has mainly been studied for its thermostable enzymes. More recently, the potential of using the species as a cell factory and in biorefinery platforms has been explored, due to the elevated growth temperature, native production of compounds such as carotenoids and exopolysaccharides, the ability to grow on a wide range of carbon sources including polysaccharides, and available genetic tools. A comprehensive understanding of the metabolism of cell factories is important. Here, we report a genome-scale metabolic model of R. marinus DSM 4252T. Moreover, the genome of the genetically amenable R. marinus ISCaR-493 was sequenced and the analysis of the core genome indicated that the model could be used for both strains. Bioreactor growth data were obtained, used for constraining the model and the predicted and experimental growth rates were compared. The model correctly predicted the growth rates of both strains. During the reconstruction process, different aspects of the R. marinus metabolism were reviewed and subsequently, both cell densities and carotenoid production were investigated for strain ISCaR-493 under different growth conditions. Additionally, the dxs gene, which was not found in the R. marinus genomes, from Thermus thermophilus was cloned on a shuttle vector into strain ISCaR-493 resulting in a higher yield of carotenoids.

基因组尺度的代谢重建提供了对嗜热细菌海洋红热菌代谢的深入了解。
对嗜热细菌海洋红热菌的研究主要是由于其耐热酶。最近,利用该物种作为细胞工厂和生物精炼平台的潜力已经被探索,由于生长温度升高,天然生产化合物,如类胡萝卜素和eps,在包括多糖在内的广泛碳源上生长的能力,以及可用的遗传工具。全面了解细胞工厂的代谢是很重要的。在此,我们报道了一种marinus R. DSM 4252T的基因组尺度代谢模型。此外,对具有遗传亲和性的marinus R. ISCaR-493进行了基因组测序,并对核心基因组进行了分析,结果表明该模型可用于两种菌株。获得了生物反应器的生长数据,用于约束模型,并比较了预测生长速率和实验生长速率。该模型正确地预测了这两种菌株的生长速度。在重建过程中,我们回顾了R. marinus代谢的不同方面,随后研究了菌株ISCaR-493在不同生长条件下的细胞密度和类胡萝卜素产量。此外,将嗜热热菌的dxs基因通过穿梭载体克隆到菌株ISCaR-493中,获得了较高的类胡萝卜素产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信