Unraveling the Interplay Between Memristive and Magnetoresistive Behaviors in LaCoO3/SrTiO3 Superlattice-Based Neural Synaptic Devices.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zeou Yang, Xiaozhong Huang, Yu Liu, Ze Wang, Zhengwei Zhang, Bingyang Ma, Hailong Shang, Lanzhi Wang, Tao Zhu, Xidong Duan, Hailong Hu, Jianling Yue
{"title":"Unraveling the Interplay Between Memristive and Magnetoresistive Behaviors in LaCoO<sub>3</sub>/SrTiO<sub>3</sub> Superlattice-Based Neural Synaptic Devices.","authors":"Zeou Yang, Xiaozhong Huang, Yu Liu, Ze Wang, Zhengwei Zhang, Bingyang Ma, Hailong Shang, Lanzhi Wang, Tao Zhu, Xidong Duan, Hailong Hu, Jianling Yue","doi":"10.1002/smtd.202401259","DOIUrl":null,"url":null,"abstract":"<p><p>Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO<sub>3</sub>/SrTiO<sub>3</sub>)<sub>n</sub>/LaCoO<sub>3</sub>/Nb:SrTiO<sub>3</sub> (Pt/(LCO/STO)<sub>n</sub>/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively. The results show that both memristive and magnetoresistive properties can coexist without any compromise in performance, and the values of R<sub>OFF</sub>/R<sub>ON</sub> and tunnel magnetoresistance (TMR) ratio are both improved by ≈1000% compared to a single-period heterostructure. Notably, the Pt/(LCO/STO)<sub>5</sub>/LCO/NSTO device demonstrates superior multilevel storage performance, characterized by extended endurance, reliable retention, high R<sub>OFF</sub>/R<sub>ON</sub> ratio, significant TMR ratio, and fundamental synaptic behaviors. Furthermore, density functional theory (DFT) is employed to calculate the changes in oxygen vacancies, affecting the overall energy bands and magnetic moments in the monolayer and multi-periodic structures. Simulations using the handwritten digit recognition classification achieve the highest accuracy of 94.38%. These attributes suggest that the devices hold considerable promise for application in data storage and neuromorphic computing, offering a platform for high-density neural circuits in intelligent electronic devices.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401259"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401259","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO3/SrTiO3)n/LaCoO3/Nb:SrTiO3 (Pt/(LCO/STO)n/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively. The results show that both memristive and magnetoresistive properties can coexist without any compromise in performance, and the values of ROFF/RON and tunnel magnetoresistance (TMR) ratio are both improved by ≈1000% compared to a single-period heterostructure. Notably, the Pt/(LCO/STO)5/LCO/NSTO device demonstrates superior multilevel storage performance, characterized by extended endurance, reliable retention, high ROFF/RON ratio, significant TMR ratio, and fundamental synaptic behaviors. Furthermore, density functional theory (DFT) is employed to calculate the changes in oxygen vacancies, affecting the overall energy bands and magnetic moments in the monolayer and multi-periodic structures. Simulations using the handwritten digit recognition classification achieve the highest accuracy of 94.38%. These attributes suggest that the devices hold considerable promise for application in data storage and neuromorphic computing, offering a platform for high-density neural circuits in intelligent electronic devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信