Lana M Austin, J Nevil Amos, Diana A Robledo-Ruiz, Jessica W Zhou, Rohan H Clarke, Alexandra Pavlova, Paul Sunnucks
{"title":"Random Mating in a Hybrid Zone Between Two Putative Climate-Adapted Bird Lineages With Predicted Mitonuclear Incompatibilities.","authors":"Lana M Austin, J Nevil Amos, Diana A Robledo-Ruiz, Jessica W Zhou, Rohan H Clarke, Alexandra Pavlova, Paul Sunnucks","doi":"10.1111/mec.17612","DOIUrl":null,"url":null,"abstract":"<p><p>Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions. Female-specific selection and male-mediated gene flow across the hybrid zone where the lineages coexist and interbreed can explain this pattern. It remains unknown whether lineage divergence is driven by intrinsic incompatibilities (particularly in females; Haldane's rule), extrinsic selection, both, or other drivers. We tested whether lineage divergence could be facilitated by non-random mate-pairing with respect to partners' mitolineage and/or mitonuclear genes encoded by the Z sex-chromosome, which differ between the lineages. We used field-, Z-linked- and mitolineage data from two locations where lineages hybridise to test whether females mate disproportionately with (1) males of their own mitolineage and/or bearing similar Z-linked variation, as might be expected if hybrids experience intrinsic incompatibilities, or (2) putatively locally-adapted males, as might be expected under environmental selection. Comparing field observations with simulations provided no evidence of non-random mating, thus drivers of observed population genetic patterns are consistent with reduced female gene flow likely acting post-mating. Future tests of female-biased mortality at different life stages and habitat selection may clarify mechanisms of selection.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17612"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17612","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions. Female-specific selection and male-mediated gene flow across the hybrid zone where the lineages coexist and interbreed can explain this pattern. It remains unknown whether lineage divergence is driven by intrinsic incompatibilities (particularly in females; Haldane's rule), extrinsic selection, both, or other drivers. We tested whether lineage divergence could be facilitated by non-random mate-pairing with respect to partners' mitolineage and/or mitonuclear genes encoded by the Z sex-chromosome, which differ between the lineages. We used field-, Z-linked- and mitolineage data from two locations where lineages hybridise to test whether females mate disproportionately with (1) males of their own mitolineage and/or bearing similar Z-linked variation, as might be expected if hybrids experience intrinsic incompatibilities, or (2) putatively locally-adapted males, as might be expected under environmental selection. Comparing field observations with simulations provided no evidence of non-random mating, thus drivers of observed population genetic patterns are consistent with reduced female gene flow likely acting post-mating. Future tests of female-biased mortality at different life stages and habitat selection may clarify mechanisms of selection.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms