Biomimetic Vascularized iPSC-Hepatocyte Spheroids for Liver Regeneration.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinglin Wang, Danqing Huang, Haozhen Ren, Yuanjin Zhao
{"title":"Biomimetic Vascularized iPSC-Hepatocyte Spheroids for Liver Regeneration.","authors":"Jinglin Wang, Danqing Huang, Haozhen Ren, Yuanjin Zhao","doi":"10.1002/advs.202405662","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cell derived hepatocytes (hiPSC-heps) hold promising value for acute liver failure (ALF) treatment, while their therapeutic efficacy is usually limited by low cell bioactivity and untargeted in vivo accumulation. Here, inspired by vascularity supporting cellular architectures in the tissues and organs, a novel vascularized hiPSC-heps spheroid based on microfluidic microcapsules is presented for liver repair via orthotopic transplantation. The microcapsules are comprised of aqueous cores that facilitate hiPSC-hep aggregating into spheroids, and hybrid hydrogel shells of sodium alginate and hyaluronic acid methacryloyl (HAMA). By selectively degrading the alginate, the microcapsules are imparted with porous HAMA shells, which not only allowed human umbilical vein endothelial cells (HUVECs) to attach and form vascularized networks, but also facilitated communication between HUVECs and hiPSC-heps. The specific spatial distributions of these cells in the vascularized hiPSC-hep spheroids can provide nutrition support, promote the hepatic functions, and avoid immune cell attacks. Based on these features, it is illustrated that the vascularized hiPSC-hep spheroids can repair the acute failing liver more effectively, indicating their practical values in clinical liver repair.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2405662"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202405662","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Human induced pluripotent stem cell derived hepatocytes (hiPSC-heps) hold promising value for acute liver failure (ALF) treatment, while their therapeutic efficacy is usually limited by low cell bioactivity and untargeted in vivo accumulation. Here, inspired by vascularity supporting cellular architectures in the tissues and organs, a novel vascularized hiPSC-heps spheroid based on microfluidic microcapsules is presented for liver repair via orthotopic transplantation. The microcapsules are comprised of aqueous cores that facilitate hiPSC-hep aggregating into spheroids, and hybrid hydrogel shells of sodium alginate and hyaluronic acid methacryloyl (HAMA). By selectively degrading the alginate, the microcapsules are imparted with porous HAMA shells, which not only allowed human umbilical vein endothelial cells (HUVECs) to attach and form vascularized networks, but also facilitated communication between HUVECs and hiPSC-heps. The specific spatial distributions of these cells in the vascularized hiPSC-hep spheroids can provide nutrition support, promote the hepatic functions, and avoid immune cell attacks. Based on these features, it is illustrated that the vascularized hiPSC-hep spheroids can repair the acute failing liver more effectively, indicating their practical values in clinical liver repair.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信