{"title":"Preparation and pharmacodynamic evaluation of isorhamnetin-Soluplus-TPGS mixed micelles","authors":"Tingyuan Li, Jiaying Li, Qilong Wang, Mingjie Gong, Xiaowen Wang, Xia Jiang, Qinyang Hua, Hao Ji, Elmurat Toreniyazov, Jiangnan Yu, Xia Cao, Michael Adu-Frimpong, Ximing Xu","doi":"10.1007/s11051-024-06139-4","DOIUrl":null,"url":null,"abstract":"<div><p>Isorhamnetin (ISO) is a kind of flavonoid widely found in sea buckthorn, ginkgo biloba, and other plants. It has many pharmacological activities, but poor solubility in aqueous media has limited its clinical application. In order to increase the bioavailability of ISO, we employed a thin film dispersion method to prepare ISO-loaded Soluplus-TPGS mixed polymer micelle (ISO-STM) and subsequently conducted appropriate characterizations. The micelles prepared in this work were spherical nanoparticles with uniform distribution with respective particle size (PS) and dispersion coefficient (PDI) of 81.62 ± 1.23 nm and 0.115 ± 0.020. Meanwhile, the encapsulation rate (EE) was 91.37% ± 0.82%, whereas the drug loading (DL) was 5.91% ± 0.06%. Compared to free ISO, the dissolution rate of mixed micelles (MM) significantly increased in three media. After oral administration, the oral bioavailability of MM was nearly 3 times higher than free ISO’s. In addition, the results of the zebrafish experiment showed that the anti-aging of zebrafish in the administration group was significantly better than that in the model control group. In summary, ISO-STM is a promising method with the potential to improve the solubility, and bioavailability and enhance the clinical application value of ISO.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06139-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Isorhamnetin (ISO) is a kind of flavonoid widely found in sea buckthorn, ginkgo biloba, and other plants. It has many pharmacological activities, but poor solubility in aqueous media has limited its clinical application. In order to increase the bioavailability of ISO, we employed a thin film dispersion method to prepare ISO-loaded Soluplus-TPGS mixed polymer micelle (ISO-STM) and subsequently conducted appropriate characterizations. The micelles prepared in this work were spherical nanoparticles with uniform distribution with respective particle size (PS) and dispersion coefficient (PDI) of 81.62 ± 1.23 nm and 0.115 ± 0.020. Meanwhile, the encapsulation rate (EE) was 91.37% ± 0.82%, whereas the drug loading (DL) was 5.91% ± 0.06%. Compared to free ISO, the dissolution rate of mixed micelles (MM) significantly increased in three media. After oral administration, the oral bioavailability of MM was nearly 3 times higher than free ISO’s. In addition, the results of the zebrafish experiment showed that the anti-aging of zebrafish in the administration group was significantly better than that in the model control group. In summary, ISO-STM is a promising method with the potential to improve the solubility, and bioavailability and enhance the clinical application value of ISO.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.