Yttrium-doped Li4Ti5O12 nanoparticles as anode for high-rate and high-energy lithium-ion batteries

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kai Su, Chenxia Tang, Chunyue Li, Shijie Weng, Yong Xiang, Xiaoli Peng
{"title":"Yttrium-doped Li4Ti5O12 nanoparticles as anode for high-rate and high-energy lithium-ion batteries","authors":"Kai Su,&nbsp;Chenxia Tang,&nbsp;Chunyue Li,&nbsp;Shijie Weng,&nbsp;Yong Xiang,&nbsp;Xiaoli Peng","doi":"10.1186/s11671-024-04177-4","DOIUrl":null,"url":null,"abstract":"<div><p>Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) batteries are known for safety and long lifespan due to zero-strain and stable lattice. However, their low specific capacity and lithium-ion diffusion limit practical use. This study explored modifying LTO through yttrium doping by hydrothermal method to form Li<sub>4</sub>Y<sub>0.2</sub>Ti<sub>4.8</sub>O<sub>12</sub> nanoparticles. This approach optimized electron and ion transport, markedly enhancing rate and cycle performance. XRD and TEM revealed that Y addition increased interplanar distance of LTO and widened Li<sup>+</sup> transport pathways. XPS indicated that Y doping augmented the oxygen vacancy concentration and Ti<sup>3+</sup> content. UV tests demonstrated a band gap reduction from 3.72 eV to 2.94 eV, accompanied by enhanced electronic conductivity. EIS tests showed lithium-ion diffusion coefficient remarkably increased to 1.27 × 10<sup>–10</sup> cm<sup>2</sup> s<sup>−1</sup><sub>.</sub> The initial discharge capacity of Li<sub>4</sub>Y<sub>0.2</sub>Ti<sub>4.8</sub>O<sub>12</sub> at 1 A g<sup>−1</sup> reached 198.9 mAh g<sup>−1</sup> and retained 89.3% capacity after 1000 cycles. At 6 A g<sup>−1</sup>, the discharge capacity was 161.1 mAh g<sup>−1</sup>, while at an ultra-high current density of 20 A g<sup>−1</sup>, it reached 78.8 mAh g<sup>−1</sup>, highlighting its robust rate performance. The yttrium-doped and nano-morphology stabilizes the LTO lattice, enhancing rate performance and cycling stability. This study reveals that LTO has the potential to be used in the high-energy fast-charging storage market.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04177-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04177-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Li4Ti5O12 (LTO) batteries are known for safety and long lifespan due to zero-strain and stable lattice. However, their low specific capacity and lithium-ion diffusion limit practical use. This study explored modifying LTO through yttrium doping by hydrothermal method to form Li4Y0.2Ti4.8O12 nanoparticles. This approach optimized electron and ion transport, markedly enhancing rate and cycle performance. XRD and TEM revealed that Y addition increased interplanar distance of LTO and widened Li+ transport pathways. XPS indicated that Y doping augmented the oxygen vacancy concentration and Ti3+ content. UV tests demonstrated a band gap reduction from 3.72 eV to 2.94 eV, accompanied by enhanced electronic conductivity. EIS tests showed lithium-ion diffusion coefficient remarkably increased to 1.27 × 10–10 cm2 s−1. The initial discharge capacity of Li4Y0.2Ti4.8O12 at 1 A g−1 reached 198.9 mAh g−1 and retained 89.3% capacity after 1000 cycles. At 6 A g−1, the discharge capacity was 161.1 mAh g−1, while at an ultra-high current density of 20 A g−1, it reached 78.8 mAh g−1, highlighting its robust rate performance. The yttrium-doped and nano-morphology stabilizes the LTO lattice, enhancing rate performance and cycling stability. This study reveals that LTO has the potential to be used in the high-energy fast-charging storage market.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
文献相关原料
公司名称
产品信息
阿拉丁
Titanium tetrabutylate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信