{"title":"Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection","authors":"Vadim Lanko;Ilya Makarov","doi":"10.1109/OJIES.2024.3501014","DOIUrl":null,"url":null,"abstract":"Multivariate time-series anomaly detection is a complex task that requires capturing temporal and spatial correlations. Recently, among the unsupervised methods, diffusion models have attracted increased attention among researchers for addressing this particular task. However, spatial information often remains underutilized or overlooked in existing models. In this article, we propose a novel reconstruction-based approach that enhances normal pattern learning through data masking and leverages diffusion models to capture both temporal and spatial interrelations via graph-attention layers. To address the problem of overgeneralization, where anomalous points are reconstructed too well, potentially abnormal points are initially masked based on the reconstruction error produced by the autoencoder. The masked time-series data is then corrupted by noise and reconstructed back by the diffusion model that removes noise in a step-by-step manner. Evaluation on four datasets from various sources demonstrates the effectiveness of our approach, achieving an average \n<inline-formula><tex-math>$F1$</tex-math></inline-formula>\n-score of 96.51%, outperforming many existing baselines. The ablation study estimates the contribution of each of the key components of the model to the score.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1353-1364"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10755103/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multivariate time-series anomaly detection is a complex task that requires capturing temporal and spatial correlations. Recently, among the unsupervised methods, diffusion models have attracted increased attention among researchers for addressing this particular task. However, spatial information often remains underutilized or overlooked in existing models. In this article, we propose a novel reconstruction-based approach that enhances normal pattern learning through data masking and leverages diffusion models to capture both temporal and spatial interrelations via graph-attention layers. To address the problem of overgeneralization, where anomalous points are reconstructed too well, potentially abnormal points are initially masked based on the reconstruction error produced by the autoencoder. The masked time-series data is then corrupted by noise and reconstructed back by the diffusion model that removes noise in a step-by-step manner. Evaluation on four datasets from various sources demonstrates the effectiveness of our approach, achieving an average
$F1$
-score of 96.51%, outperforming many existing baselines. The ablation study estimates the contribution of each of the key components of the model to the score.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.