Joseph Fowler;Ian Fogarty Florang;Nathan Nakamura;Daniel Swetz;Paul Szypryt;Joel Ullom
{"title":"Computed Models of Natural Radiation Backgrounds in Qubits and Superconducting Detectors","authors":"Joseph Fowler;Ian Fogarty Florang;Nathan Nakamura;Daniel Swetz;Paul Szypryt;Joel Ullom","doi":"10.1109/TASC.2024.3512523","DOIUrl":null,"url":null,"abstract":"Naturally occurring radiation backgrounds cause correlated decoherence events in superconducting qubits. These backgrounds include both gamma rays produced by terrestrial radioisotopes and cosmic rays. We use the particle-transport code Geant4 and the PARMA summary of the cosmic-ray spectrum to model both sources of natural radiation and to study their effects in the typical substrates used in superconducting electronics. We focus especially on three rates that summarize radiation's effect on substrates. We give analytic expressions for these rates, and how they depend upon parameters including laboratory elevation, substrate material, ceiling thickness, and wafer area and thickness. The modeled rates and the distribution of event energies are consistent with our earlier measurement of radiation backgrounds using a silicon thermal kinetic-inductance detector.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10783034/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Naturally occurring radiation backgrounds cause correlated decoherence events in superconducting qubits. These backgrounds include both gamma rays produced by terrestrial radioisotopes and cosmic rays. We use the particle-transport code Geant4 and the PARMA summary of the cosmic-ray spectrum to model both sources of natural radiation and to study their effects in the typical substrates used in superconducting electronics. We focus especially on three rates that summarize radiation's effect on substrates. We give analytic expressions for these rates, and how they depend upon parameters including laboratory elevation, substrate material, ceiling thickness, and wafer area and thickness. The modeled rates and the distribution of event energies are consistent with our earlier measurement of radiation backgrounds using a silicon thermal kinetic-inductance detector.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.