Daniel J. Salas-Escabillas, Megan T. Hoffman, Sydney M. Brender, Jacee S. Moore, Hui-Ju Wen, Simone Benitz, Erick T. Davis, Daniel Long, Allison M. Wombwell, Ella Rose D. Chianis, Brittany L. Allen-Petersen, Nina G. Steele, Rosalie C. Sears, Ichiro Matsumoto, Kathleen E. DelGiorno, Howard C. Crawford
{"title":"Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer","authors":"Daniel J. Salas-Escabillas, Megan T. Hoffman, Sydney M. Brender, Jacee S. Moore, Hui-Ju Wen, Simone Benitz, Erick T. Davis, Daniel Long, Allison M. Wombwell, Ella Rose D. Chianis, Brittany L. Allen-Petersen, Nina G. Steele, Rosalie C. Sears, Ichiro Matsumoto, Kathleen E. DelGiorno, Howard C. Crawford","doi":"10.1016/j.devcel.2024.12.003","DOIUrl":null,"url":null,"abstract":"Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplasia, which progresses to neoplasia and cancer. Tuft cells (TCs) are chemosensory cells not found in the normal pancreas but arise in cancer precursor lesions and diminish during progression to carcinoma. These metaplastic TCs (mTCs) suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we created a dual recombinase lineage trace model, wherein a pancreas-specific FlpO was used to induce tumorigenesis, while a tuft-cell specific Pou2f3<sup>CreERT/+</sup> driver was used to induce expression of a tdTomato reporter. We found that mTCs in carcinoma transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in patients. Using conditional knockout and overexpression systems, we found that <em>Myc</em> activity in mTCs is necessary and sufficient to induce this tuft-to-neuroendocrine transition (TNT).","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"20 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplasia, which progresses to neoplasia and cancer. Tuft cells (TCs) are chemosensory cells not found in the normal pancreas but arise in cancer precursor lesions and diminish during progression to carcinoma. These metaplastic TCs (mTCs) suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we created a dual recombinase lineage trace model, wherein a pancreas-specific FlpO was used to induce tumorigenesis, while a tuft-cell specific Pou2f3CreERT/+ driver was used to induce expression of a tdTomato reporter. We found that mTCs in carcinoma transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in patients. Using conditional knockout and overexpression systems, we found that Myc activity in mTCs is necessary and sufficient to induce this tuft-to-neuroendocrine transition (TNT).
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.