Coupled Stacking Faults in Silver Nanorods for CO2 Electroreduction

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wen-Jing Kang, Zhe Li, Yi Feng, Zi-Zheng Shi, Xin-Zhuo Hu, Cun-Ku Dong, Jing Yang, Hui Liu, Peng-Fei Yin, Rui Zhang, Xi-Wen Du
{"title":"Coupled Stacking Faults in Silver Nanorods for CO2 Electroreduction","authors":"Wen-Jing Kang, Zhe Li, Yi Feng, Zi-Zheng Shi, Xin-Zhuo Hu, Cun-Ku Dong, Jing Yang, Hui Liu, Peng-Fei Yin, Rui Zhang, Xi-Wen Du","doi":"10.1021/acs.nanolett.4c04204","DOIUrl":null,"url":null,"abstract":"The interaction of defects has been proven effective in regulating the mechanical properties of structural materials, while its influence on the physicochemical performance of functional materials has been rarely reported. Herein, we synthesized Ag nanorods with dense stacking faults and investigated how the defect interaction affects the catalytic properties. We found that the stacking faults can couple with each other to form a unique structure of opposite atoms with extortionately high tensile strain. Experimental and theoretical analyses reveal that the opposite-atom structure facilitates the adsorption and activation of CO<sub>2</sub> molecules, thus improving the catalytic performance of the carbon dioxide electroreduction reaction (CO<sub>2</sub>RR). As a result, Ag nanorods achieve high CO partial current density (−11.87 mA cm<sup>–2</sup> at −0.8 V vs RHE) and high Faraday efficiency (&gt;95%), superior to most Ag-based catalysts. Our work indicates that the defect interaction is an effective means to boost the performance of functional materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"89 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04204","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of defects has been proven effective in regulating the mechanical properties of structural materials, while its influence on the physicochemical performance of functional materials has been rarely reported. Herein, we synthesized Ag nanorods with dense stacking faults and investigated how the defect interaction affects the catalytic properties. We found that the stacking faults can couple with each other to form a unique structure of opposite atoms with extortionately high tensile strain. Experimental and theoretical analyses reveal that the opposite-atom structure facilitates the adsorption and activation of CO2 molecules, thus improving the catalytic performance of the carbon dioxide electroreduction reaction (CO2RR). As a result, Ag nanorods achieve high CO partial current density (−11.87 mA cm–2 at −0.8 V vs RHE) and high Faraday efficiency (>95%), superior to most Ag-based catalysts. Our work indicates that the defect interaction is an effective means to boost the performance of functional materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信