Flocculating-Regulated TiO2 Deposition Enables the Synergistic Effect of Doping for Perovskite Solar Cells with Efficiency Exceeding 25.8%

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Huilin Yan, Xing Zhao, Hao Huang, Danxia Wu, Pengkun Zhu, Danni Li, Bingbing Fan, Yujie Qiu, Yuqing Yang, Qi Geng, Peng Cui, Yingying Yang, Zhineng Lan, Meicheng Li
{"title":"Flocculating-Regulated TiO2 Deposition Enables the Synergistic Effect of Doping for Perovskite Solar Cells with Efficiency Exceeding 25.8%","authors":"Huilin Yan,&nbsp;Xing Zhao,&nbsp;Hao Huang,&nbsp;Danxia Wu,&nbsp;Pengkun Zhu,&nbsp;Danni Li,&nbsp;Bingbing Fan,&nbsp;Yujie Qiu,&nbsp;Yuqing Yang,&nbsp;Qi Geng,&nbsp;Peng Cui,&nbsp;Yingying Yang,&nbsp;Zhineng Lan,&nbsp;Meicheng Li","doi":"10.1002/aenm.202403200","DOIUrl":null,"url":null,"abstract":"<p>The planar perovskite solar cells (PSCs) using TiO<sub>2</sub> as the electron transport layer (ETL) are undergoing a stagnated efficiency improvement, which the inferior TiO<sub>2</sub> ETL mainly limits. Herein, a flocculating-regulated TiO<sub>2</sub> deposition using SnCl<sub>2</sub>·2H<sub>2</sub>O is reported as the flocculate to control the nanoparticle size finely for optimizing TiO<sub>2</sub> deposition and to achieve a synergistic Sn doping. The SnCl<sub>2</sub>·2H<sub>2</sub>O incorporated into bath precursor can bridge-link the suspended nanoparticles, which promotes the precipitation of large-sized nanoparticles and leaves the smaller-sized nanoparticles for deposition, leading to a compact TiO<sub>2</sub> film with marked reduced surface roughness. Meanwhile, along with flocculating-regulated TiO<sub>2</sub> deposition, it can also be achieved the Sn-doping of TiO<sub>2</sub>, which increases the conductivity of TiO<sub>2</sub> thin films by ≈2.5 times. As a consequence, attributing to the optimized interface contact and accelerated interfacial electron transport, the planar PSCs achieved a certification efficiency of 25.85%, the highest value among the TiO<sub>2</sub>-based planar PSCs to date. In addition, the PSCs can maintain 99% of their initial efficiency after more than 4500 h of storage in ambient air, showing excellent stability.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 8","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403200","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The planar perovskite solar cells (PSCs) using TiO2 as the electron transport layer (ETL) are undergoing a stagnated efficiency improvement, which the inferior TiO2 ETL mainly limits. Herein, a flocculating-regulated TiO2 deposition using SnCl2·2H2O is reported as the flocculate to control the nanoparticle size finely for optimizing TiO2 deposition and to achieve a synergistic Sn doping. The SnCl2·2H2O incorporated into bath precursor can bridge-link the suspended nanoparticles, which promotes the precipitation of large-sized nanoparticles and leaves the smaller-sized nanoparticles for deposition, leading to a compact TiO2 film with marked reduced surface roughness. Meanwhile, along with flocculating-regulated TiO2 deposition, it can also be achieved the Sn-doping of TiO2, which increases the conductivity of TiO2 thin films by ≈2.5 times. As a consequence, attributing to the optimized interface contact and accelerated interfacial electron transport, the planar PSCs achieved a certification efficiency of 25.85%, the highest value among the TiO2-based planar PSCs to date. In addition, the PSCs can maintain 99% of their initial efficiency after more than 4500 h of storage in ambient air, showing excellent stability.

Abstract Image

Abstract Image

絮凝调控TiO2沉积使掺杂对钙钛矿太阳能电池产生协同效应,效率超过25.8%
以TiO2作为电子传输层(ETL)的平面钙钛矿太阳能电池(PSCs)效率的提高停滞不前,其主要限制因素是TiO2 ETL的缺陷。本文报道了以SnCl2·2H2O为絮凝剂的絮凝调控TiO2沉积,以精细控制纳米颗粒大小,优化TiO2沉积,实现锡的协同掺杂。加入到镀液前驱体中的SnCl2·2H2O可以桥接悬浮的纳米颗粒,促进大尺寸纳米颗粒的沉淀,并留下较小尺寸的纳米颗粒沉积,从而形成致密的TiO2膜,表面粗糙度明显降低。同时,通过絮凝调控TiO2沉积,还可以实现TiO2的sn掺杂,使TiO2薄膜的电导率提高约2.5倍。结果表明,由于优化的界面接触和加速的界面电子传递,平面PSCs的认证效率达到25.85%,是迄今为止二氧化钛基平面PSCs的最高认证效率。此外,PSCs在环境空气中储存超过4500小时后可以保持99%的初始效率,表现出优异的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信