{"title":"Flocculating-Regulated TiO2 Deposition Enables the Synergistic Effect of Doping for Perovskite Solar Cells with Efficiency Exceeding 25.8%","authors":"Huilin Yan, Xing Zhao, Hao Huang, Danxia Wu, Pengkun Zhu, Danni Li, Bingbing Fan, Yujie Qiu, Yuqing Yang, Qi Geng, Peng Cui, Yingying Yang, Zhineng Lan, Meicheng Li","doi":"10.1002/aenm.202403200","DOIUrl":null,"url":null,"abstract":"The planar perovskite solar cells (PSCs) using TiO<sub>2</sub> as the electron transport layer (ETL) are undergoing a stagnated efficiency improvement, which the inferior TiO<sub>2</sub> ETL mainly limits. Herein, a flocculating-regulated TiO<sub>2</sub> deposition using SnCl<sub>2</sub>·2H<sub>2</sub>O is reported as the flocculate to control the nanoparticle size finely for optimizing TiO<sub>2</sub> deposition and to achieve a synergistic Sn doping. The SnCl<sub>2</sub>·2H<sub>2</sub>O incorporated into bath precursor can bridge-link the suspended nanoparticles, which promotes the precipitation of large-sized nanoparticles and leaves the smaller-sized nanoparticles for deposition, leading to a compact TiO<sub>2</sub> film with marked reduced surface roughness. Meanwhile, along with flocculating-regulated TiO<sub>2</sub> deposition, it can also be achieved the Sn-doping of TiO<sub>2</sub>, which increases the conductivity of TiO<sub>2</sub> thin films by ≈2.5 times. As a consequence, attributing to the optimized interface contact and accelerated interfacial electron transport, the planar PSCs achieved a certification efficiency of 25.85%, the highest value among the TiO<sub>2</sub>-based planar PSCs to date. In addition, the PSCs can maintain 99% of their initial efficiency after more than 4500 h of storage in ambient air, showing excellent stability.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"65 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403200","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The planar perovskite solar cells (PSCs) using TiO2 as the electron transport layer (ETL) are undergoing a stagnated efficiency improvement, which the inferior TiO2 ETL mainly limits. Herein, a flocculating-regulated TiO2 deposition using SnCl2·2H2O is reported as the flocculate to control the nanoparticle size finely for optimizing TiO2 deposition and to achieve a synergistic Sn doping. The SnCl2·2H2O incorporated into bath precursor can bridge-link the suspended nanoparticles, which promotes the precipitation of large-sized nanoparticles and leaves the smaller-sized nanoparticles for deposition, leading to a compact TiO2 film with marked reduced surface roughness. Meanwhile, along with flocculating-regulated TiO2 deposition, it can also be achieved the Sn-doping of TiO2, which increases the conductivity of TiO2 thin films by ≈2.5 times. As a consequence, attributing to the optimized interface contact and accelerated interfacial electron transport, the planar PSCs achieved a certification efficiency of 25.85%, the highest value among the TiO2-based planar PSCs to date. In addition, the PSCs can maintain 99% of their initial efficiency after more than 4500 h of storage in ambient air, showing excellent stability.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.