Generating a Peptide Library Using the Repeats of Amino Acid Scaffolds Created by Sliding the Framework of a 7-mer Human Chemerin Segment and Discovery of Potent Antibacterial and Antimycobacterial Peptides
Sariyah Akhtar, Mohd Mustkim Ansari, Rahul Dev Verma, Juhi Sharma, Arvind Gupta, Rajendra Kumar Dhuriya, Devesh Pratap Verma, Jyotshana Saroj, Mehmood Ali, Neeraj Kumar Verma, Kalyan Mitra, Bhupendra Narain Singh, Jimut Kanti Ghosh
{"title":"Generating a Peptide Library Using the Repeats of Amino Acid Scaffolds Created by Sliding the Framework of a 7-mer Human Chemerin Segment and Discovery of Potent Antibacterial and Antimycobacterial Peptides","authors":"Sariyah Akhtar, Mohd Mustkim Ansari, Rahul Dev Verma, Juhi Sharma, Arvind Gupta, Rajendra Kumar Dhuriya, Devesh Pratap Verma, Jyotshana Saroj, Mehmood Ali, Neeraj Kumar Verma, Kalyan Mitra, Bhupendra Narain Singh, Jimut Kanti Ghosh","doi":"10.1021/acs.jmedchem.4c02351","DOIUrl":null,"url":null,"abstract":"The quest for new approaches for generating novel bioactive designer proteins/peptides has continued with their success in various biomedical applications. Previously, we designed a 14-mer α-helical peptide with antimicrobial and antimycobacterial activities by employing a tandem repeat of the 7-mer, “KVLGRLV” human chemerin segment. Herein, we devised a new method of “sliding framework” with this segment to create amino acid scaffolds of varying sizes and sequences and explored the design of a peptide library with antibacterial and antimycobacterial activities. By utilizing 2 to 7 repeats of these 2 to 6-residue scaffolds, we designed and synthesized 30 peptides of 10–16 residue lengths. Thus, we identified novel AMPs with α-helical, β-sheet, and random coil structures, membrane-destabilizing, and intracellular modes of action, and 9 of them showed therapeutic indices between 100 and 750. Three and two of these nine peptides showed <i>in vivo</i> antibacterial and antitubercular efficacies against <i>Escherichia coli</i> ATCC 25922 and <i>Mycobacterium bovis</i> BCG infections, respectively, in a mouse model.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"14 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02351","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The quest for new approaches for generating novel bioactive designer proteins/peptides has continued with their success in various biomedical applications. Previously, we designed a 14-mer α-helical peptide with antimicrobial and antimycobacterial activities by employing a tandem repeat of the 7-mer, “KVLGRLV” human chemerin segment. Herein, we devised a new method of “sliding framework” with this segment to create amino acid scaffolds of varying sizes and sequences and explored the design of a peptide library with antibacterial and antimycobacterial activities. By utilizing 2 to 7 repeats of these 2 to 6-residue scaffolds, we designed and synthesized 30 peptides of 10–16 residue lengths. Thus, we identified novel AMPs with α-helical, β-sheet, and random coil structures, membrane-destabilizing, and intracellular modes of action, and 9 of them showed therapeutic indices between 100 and 750. Three and two of these nine peptides showed in vivo antibacterial and antitubercular efficacies against Escherichia coli ATCC 25922 and Mycobacterium bovis BCG infections, respectively, in a mouse model.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.