Generating a Peptide Library Using the Repeats of Amino Acid Scaffolds Created by Sliding the Framework of a 7-mer Human Chemerin Segment and Discovery of Potent Antibacterial and Antimycobacterial Peptides

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Sariyah Akhtar, Mohd Mustkim Ansari, Rahul Dev Verma, Juhi Sharma, Arvind Gupta, Rajendra Kumar Dhuriya, Devesh Pratap Verma, Jyotshana Saroj, Mehmood Ali, Neeraj Kumar Verma, Kalyan Mitra, Bhupendra Narain Singh, Jimut Kanti Ghosh
{"title":"Generating a Peptide Library Using the Repeats of Amino Acid Scaffolds Created by Sliding the Framework of a 7-mer Human Chemerin Segment and Discovery of Potent Antibacterial and Antimycobacterial Peptides","authors":"Sariyah Akhtar, Mohd Mustkim Ansari, Rahul Dev Verma, Juhi Sharma, Arvind Gupta, Rajendra Kumar Dhuriya, Devesh Pratap Verma, Jyotshana Saroj, Mehmood Ali, Neeraj Kumar Verma, Kalyan Mitra, Bhupendra Narain Singh, Jimut Kanti Ghosh","doi":"10.1021/acs.jmedchem.4c02351","DOIUrl":null,"url":null,"abstract":"The quest for new approaches for generating novel bioactive designer proteins/peptides has continued with their success in various biomedical applications. Previously, we designed a 14-mer α-helical peptide with antimicrobial and antimycobacterial activities by employing a tandem repeat of the 7-mer, “KVLGRLV” human chemerin segment. Herein, we devised a new method of “sliding framework” with this segment to create amino acid scaffolds of varying sizes and sequences and explored the design of a peptide library with antibacterial and antimycobacterial activities. By utilizing 2 to 7 repeats of these 2 to 6-residue scaffolds, we designed and synthesized 30 peptides of 10–16 residue lengths. Thus, we identified novel AMPs with α-helical, β-sheet, and random coil structures, membrane-destabilizing, and intracellular modes of action, and 9 of them showed therapeutic indices between 100 and 750. Three and two of these nine peptides showed <i>in vivo</i> antibacterial and antitubercular efficacies against <i>Escherichia coli</i> ATCC 25922 and <i>Mycobacterium bovis</i> BCG infections, respectively, in a mouse model.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"14 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02351","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The quest for new approaches for generating novel bioactive designer proteins/peptides has continued with their success in various biomedical applications. Previously, we designed a 14-mer α-helical peptide with antimicrobial and antimycobacterial activities by employing a tandem repeat of the 7-mer, “KVLGRLV” human chemerin segment. Herein, we devised a new method of “sliding framework” with this segment to create amino acid scaffolds of varying sizes and sequences and explored the design of a peptide library with antibacterial and antimycobacterial activities. By utilizing 2 to 7 repeats of these 2 to 6-residue scaffolds, we designed and synthesized 30 peptides of 10–16 residue lengths. Thus, we identified novel AMPs with α-helical, β-sheet, and random coil structures, membrane-destabilizing, and intracellular modes of action, and 9 of them showed therapeutic indices between 100 and 750. Three and two of these nine peptides showed in vivo antibacterial and antitubercular efficacies against Escherichia coli ATCC 25922 and Mycobacterium bovis BCG infections, respectively, in a mouse model.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信