Versatile LaCo0.6Ni0.4O3-δ Nanofiber Membrane for High Performance Oxygen Electrocatalysis over a Wide Temperature Range

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-24 DOI:10.1002/smll.202409051
Lu Zou, Weilin Kong, Tong Sheng, Yunfeng Tian, Jian Pu, Guntae Kim, Bo Chi
{"title":"Versatile LaCo0.6Ni0.4O3-δ Nanofiber Membrane for High Performance Oxygen Electrocatalysis over a Wide Temperature Range","authors":"Lu Zou,&nbsp;Weilin Kong,&nbsp;Tong Sheng,&nbsp;Yunfeng Tian,&nbsp;Jian Pu,&nbsp;Guntae Kim,&nbsp;Bo Chi","doi":"10.1002/smll.202409051","DOIUrl":null,"url":null,"abstract":"<p>The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key processes in numerous oxygen-involved applications over a wide temperature range. Despite advances in nanofiber engineering to increase active site density and catalytic efficiency for ORR/OER, conventional electrode fabrication methods often compromise the integrity of nanofibrous structures. Herein, a robust strategy is presented for the fabrication of LaCo<sub>0.6</sub>Ni<sub>0.4</sub>O<sub>3-δ</sub> (LCN) nanofibrous membranes using optimized electrospinning techniques. This approach achieves high specific surface area, increased porosity, rapid mass transport, and precise control of morphology and thickness. The resulting LCN nanofibers exhibit exceptional ORR and OER catalytic activity at room temperature, rivaling commercial Pt/C and RuO₂ catalysts. Moreover, in solid oxide cells (SOCs) operating at elevated temperatures, LCN nanofibrous membranes deliver remarkable ORR and OER performance, with a peak power density of 0.802 W cm<sup>−</sup><sup>2</sup> at 700 °C and excellent stability over 180 h. These results highlight the potential of nanofibrous perovskite catalysts for practical oxygen electrocatalytic applications and demonstrate that the LCN nanofibrous membrane, combined with a self-assembly approach, exploits on the advantages of high porosity and specific surface area. This work opens up new avenues for the use of nanofibrous electrodes in a wide temperature range.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409051","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key processes in numerous oxygen-involved applications over a wide temperature range. Despite advances in nanofiber engineering to increase active site density and catalytic efficiency for ORR/OER, conventional electrode fabrication methods often compromise the integrity of nanofibrous structures. Herein, a robust strategy is presented for the fabrication of LaCo0.6Ni0.4O3-δ (LCN) nanofibrous membranes using optimized electrospinning techniques. This approach achieves high specific surface area, increased porosity, rapid mass transport, and precise control of morphology and thickness. The resulting LCN nanofibers exhibit exceptional ORR and OER catalytic activity at room temperature, rivaling commercial Pt/C and RuO₂ catalysts. Moreover, in solid oxide cells (SOCs) operating at elevated temperatures, LCN nanofibrous membranes deliver remarkable ORR and OER performance, with a peak power density of 0.802 W cm2 at 700 °C and excellent stability over 180 h. These results highlight the potential of nanofibrous perovskite catalysts for practical oxygen electrocatalytic applications and demonstrate that the LCN nanofibrous membrane, combined with a self-assembly approach, exploits on the advantages of high porosity and specific surface area. This work opens up new avenues for the use of nanofibrous electrodes in a wide temperature range.

Abstract Image

用于宽温度范围内高性能氧电催化的多功能LaCo0.6Ni0.4O3‐δ纳米纤维膜
氧还原反应(ORR)和析氧反应(OER)是广泛温度范围内许多含氧应用的关键过程。尽管纳米纤维工程在提高ORR/OER的活性位点密度和催化效率方面取得了进展,但传统的电极制造方法往往会损害纳米纤维结构的完整性。本文提出了一种利用优化的静电纺丝技术制备LaCo0.6Ni0.4O3‐δ (LCN)纳米纤维膜的稳健策略。这种方法实现了高比表面积,增加孔隙度,快速的质量传输,以及精确控制形貌和厚度。所得的LCN纳米纤维在室温下表现出优异的ORR和OER催化活性,可与商用Pt/C和RuO₂催化剂相媲美。此外,在高温下工作的固体氧化物电池(soc)中,LCN纳米纤维膜提供了卓越的ORR和OER性能,在700°C时的峰值功率密度为0.802 W cm - 2,在180小时内具有出色的稳定性。这些结果突出了纳米纤维钙钛矿催化剂在实际氧电催化应用中的潜力,并证明了LCN纳米纤维膜与自组装方法相结合,利用高孔隙率和比表面积的优点。这项工作为在宽温度范围内使用纳米纤维电极开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信