Controlling Grain Boundary Segregation to Tune the Conductivity of Ceramic Proton Conductors

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Moritz Kindelmann, Ivan Povstugar, Severin Kuffer, Dylan Jennings, Julian N. Ebert, Moritz L. Weber, M. Pascal Zahler, Sonia Escolastico, Laura Almar, Jose M. Serra, Payam Kaghazchi, Martin Bram, Wolfgang Rheinheimer, Joachim Mayer, Olivier Guillon
{"title":"Controlling Grain Boundary Segregation to Tune the Conductivity of Ceramic Proton Conductors","authors":"Moritz Kindelmann, Ivan Povstugar, Severin Kuffer, Dylan Jennings, Julian N. Ebert, Moritz L. Weber, M. Pascal Zahler, Sonia Escolastico, Laura Almar, Jose M. Serra, Payam Kaghazchi, Martin Bram, Wolfgang Rheinheimer, Joachim Mayer, Olivier Guillon","doi":"10.1002/aenm.202404410","DOIUrl":null,"url":null,"abstract":"Acceptor‐doped barium zirconates are of major interest as proton‐conducting ceramics for electrochemical applications at intermediate operating temperatures. However, the proton transport through polycrystalline microstructures is hindered by the presence of a positive space charge potential at grain boundaries. During high‐temperature sintering, the positive charge acts as a driving force for acceptor dopant segregation to the grain boundary. Acceptor segregation to grain boundaries has been observed in sintered ceramics, but the fundamental relationship between the segregation kinetics and the protonic conductivity is poorly understood. Here, a comprehensive study of the influence of acceptor dopant segregation on the electrochemical properties of grain boundaries in barium zirconate ceramics is presented. An out‐of‐equilibrium model material that displays no detectable Y segregation at its grain boundaries is explicitly designed. This model material serves as a starting point to measure the kinetics of segregation and the induced changes in grain boundary conductivity upon varying thermal histories. Furthermore, the electrochemical results from impedance spectroscopy to atomic resolution transmission electron microscopy, atom probe tomography, and DFT simulations are correlated. It is discovered that acceptor dopant segregation drastically increases the proton conductivity in both the model system and several other application‐relevant compositions.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"48 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404410","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acceptor‐doped barium zirconates are of major interest as proton‐conducting ceramics for electrochemical applications at intermediate operating temperatures. However, the proton transport through polycrystalline microstructures is hindered by the presence of a positive space charge potential at grain boundaries. During high‐temperature sintering, the positive charge acts as a driving force for acceptor dopant segregation to the grain boundary. Acceptor segregation to grain boundaries has been observed in sintered ceramics, but the fundamental relationship between the segregation kinetics and the protonic conductivity is poorly understood. Here, a comprehensive study of the influence of acceptor dopant segregation on the electrochemical properties of grain boundaries in barium zirconate ceramics is presented. An out‐of‐equilibrium model material that displays no detectable Y segregation at its grain boundaries is explicitly designed. This model material serves as a starting point to measure the kinetics of segregation and the induced changes in grain boundary conductivity upon varying thermal histories. Furthermore, the electrochemical results from impedance spectroscopy to atomic resolution transmission electron microscopy, atom probe tomography, and DFT simulations are correlated. It is discovered that acceptor dopant segregation drastically increases the proton conductivity in both the model system and several other application‐relevant compositions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信