Navigating the transitional window for organic semiconductor single crystals towards practical integration: from materials, crystallization, and technologies to real-world applications

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xianshuo Wu, Xiaoting Zhu, Lingjie Sun, Shihan Zhang, Yiwen Ren, Zhaofeng Wang, Xiaotao Zhang, Fangxu Yang, Hao-Li Zhang, Wenping Hu
{"title":"Navigating the transitional window for organic semiconductor single crystals towards practical integration: from materials, crystallization, and technologies to real-world applications","authors":"Xianshuo Wu, Xiaoting Zhu, Lingjie Sun, Shihan Zhang, Yiwen Ren, Zhaofeng Wang, Xiaotao Zhang, Fangxu Yang, Hao-Li Zhang, Wenping Hu","doi":"10.1039/d4cs00987h","DOIUrl":null,"url":null,"abstract":"Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality. The commercialization trend of organic optoelectronic devices is driving the development of highly integrated OSSCs. Therefore, timely tracking of material requirements, crystallization demands, and key technologies for high integration, along with exploring their limitations and potential pathways, will provide critical guidance during this pivotal transition period. From the perspective of materials properties, multifunctional materials, such as ambipolar charge transport materials, high mobility emission materials and others, aiming at high integration, deserve our attention, and the material design rules are carefully discussed in the first section. Following this, we delve into the controllable growth of large-scale OSSCs based on crystallization thermodynamics and kinetics. Key technologies for achieving high integration are then discussed, with an emphasis on methods for growing wafer-scale organic single crystals and patterning single crystalline arrays. Subsequently, we outline the cutting-edge optoelectronic applications based on OSSCs, including organic logic circuits, electroluminescent displays, and image sensors. Moreover, explicitly recognizing as yet limitations and prospects on the road to ‘lab-to-fab’ transitions for OSSCs is crucial. Thus, we conclude by offering an objective assessment of key limitations and potential, encompassing aspects such as uniformity, integration density, stability, and driving capability, providing an instructive projection for future advancements.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"27 1","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cs00987h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality. The commercialization trend of organic optoelectronic devices is driving the development of highly integrated OSSCs. Therefore, timely tracking of material requirements, crystallization demands, and key technologies for high integration, along with exploring their limitations and potential pathways, will provide critical guidance during this pivotal transition period. From the perspective of materials properties, multifunctional materials, such as ambipolar charge transport materials, high mobility emission materials and others, aiming at high integration, deserve our attention, and the material design rules are carefully discussed in the first section. Following this, we delve into the controllable growth of large-scale OSSCs based on crystallization thermodynamics and kinetics. Key technologies for achieving high integration are then discussed, with an emphasis on methods for growing wafer-scale organic single crystals and patterning single crystalline arrays. Subsequently, we outline the cutting-edge optoelectronic applications based on OSSCs, including organic logic circuits, electroluminescent displays, and image sensors. Moreover, explicitly recognizing as yet limitations and prospects on the road to ‘lab-to-fab’ transitions for OSSCs is crucial. Thus, we conclude by offering an objective assessment of key limitations and potential, encompassing aspects such as uniformity, integration density, stability, and driving capability, providing an instructive projection for future advancements.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信