Polymer Brush Growth by Surface‐Initiated Ring‐Opening Polymerization from a Cross‐Linked Polymer Thin Film

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miguel Betancourt‐Ponce, Bharathan Govindarajan, Jacob Pike, Padma Gopalan
{"title":"Polymer Brush Growth by Surface‐Initiated Ring‐Opening Polymerization from a Cross‐Linked Polymer Thin Film","authors":"Miguel Betancourt‐Ponce, Bharathan Govindarajan, Jacob Pike, Padma Gopalan","doi":"10.1002/adfm.202420958","DOIUrl":null,"url":null,"abstract":"Modification of a surface with polymer brushes has emerged as an effective approach to tune the properties of a substrate. Brushes grown from an inimer‐containing cross‐linkable polymer coating provide significant advantages compared to other “grafting‐from” methods, such as improved stability, increased grafting density, and the potential to control the grafting density. So far, the inimer coating method has only been applied for surface‐initiated controlled radical polymerizations. In this work, an approach is presented for the fabrication of a stable cross‐linked ultra‐thin polymer coating containing hydroxyl groups which serve as initiating sites for surface‐initiated ring‐opening polymerization (SI‐ROP). The polymers used for the fabrication of the coatings consist of 2‐((tetrahydro‐<jats:italic>2H</jats:italic>‐pyran‐2‐yl)oxy)ethyl methacrylate (THPEMA), a small fraction of a cross‐linkable unit, and a diluent styrene. Three coatings with varying THPEMA and styrene content are fabricated, and poly(dimethyl siloxane) (PDMS) and poly(caprolactone) (PCL) brushes are grown by SI‐ROP of hexamethylcyclotrisiloxane (D<jats:sub>3</jats:sub>), and ε‐caprolactone respectively. The brushes are characterized by atomic force microscopy (AFM), X‐ray photoelectron spectroscopy (XPS), static contact angle measurements, ellipsometry and size exclusion chromatography (SEC). The results demonstrate a well‐controlled ROP of D<jats:sub>3</jats:sub> and ability to control grafting density by tuning the THPEMA content of the coatings.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"69 6 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202420958","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modification of a surface with polymer brushes has emerged as an effective approach to tune the properties of a substrate. Brushes grown from an inimer‐containing cross‐linkable polymer coating provide significant advantages compared to other “grafting‐from” methods, such as improved stability, increased grafting density, and the potential to control the grafting density. So far, the inimer coating method has only been applied for surface‐initiated controlled radical polymerizations. In this work, an approach is presented for the fabrication of a stable cross‐linked ultra‐thin polymer coating containing hydroxyl groups which serve as initiating sites for surface‐initiated ring‐opening polymerization (SI‐ROP). The polymers used for the fabrication of the coatings consist of 2‐((tetrahydro‐2H‐pyran‐2‐yl)oxy)ethyl methacrylate (THPEMA), a small fraction of a cross‐linkable unit, and a diluent styrene. Three coatings with varying THPEMA and styrene content are fabricated, and poly(dimethyl siloxane) (PDMS) and poly(caprolactone) (PCL) brushes are grown by SI‐ROP of hexamethylcyclotrisiloxane (D3), and ε‐caprolactone respectively. The brushes are characterized by atomic force microscopy (AFM), X‐ray photoelectron spectroscopy (XPS), static contact angle measurements, ellipsometry and size exclusion chromatography (SEC). The results demonstrate a well‐controlled ROP of D3 and ability to control grafting density by tuning the THPEMA content of the coatings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信