Orientational Disorder and Molecular Correlations in Hybrid Organic–Inorganic Perovskites: From Fundamental Insights to Technological Applications

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Carlos Escorihuela-Sayalero, Ares Sanuy, Luis Carlos Pardo, Claudio Cazorla
{"title":"Orientational Disorder and Molecular Correlations in Hybrid Organic–Inorganic Perovskites: From Fundamental Insights to Technological Applications","authors":"Carlos Escorihuela-Sayalero, Ares Sanuy, Luis Carlos Pardo, Claudio Cazorla","doi":"10.1021/acsami.4c12762","DOIUrl":null,"url":null,"abstract":"Hybrid organic–inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations. We found that, in addition to the usual vibrational and orientational contributions, rigid molecular rotations around the C–N axis and correlations between neighboring molecules noticeably contribute to the entropy increment associated with the temperature-induced order–disorder phase transition, Δ<i>S</i><sub><i>t</i></sub>. Molecular conformational changes are equally infrequent in the low-<i>T</i> ordered and high-<i>T</i> disordered phases and have a null effect on Δ<i>S</i><sub><i>t</i></sub>. Conversely, the couplings between the angular and vibrational degrees of freedom are substantially reinforced in the high-<i>T</i> disordered phase and significantly counteract the phase-transition entropy increase resulting from other factors. Furthermore, the tendency for neighboring molecules to be orientationally ordered is markedly local, consequently inhibiting the formation of extensive polar nanodomains at both low and high temperatures. This theoretical investigation not only advances the fundamental knowledge of HOIP but also establishes physically insightful connections with contemporary technological applications like photovoltaics, solid-state cooling, and energy storage.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"108 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12762","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid organic–inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CH3NH3PbI3 (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations. We found that, in addition to the usual vibrational and orientational contributions, rigid molecular rotations around the C–N axis and correlations between neighboring molecules noticeably contribute to the entropy increment associated with the temperature-induced order–disorder phase transition, ΔSt. Molecular conformational changes are equally infrequent in the low-T ordered and high-T disordered phases and have a null effect on ΔSt. Conversely, the couplings between the angular and vibrational degrees of freedom are substantially reinforced in the high-T disordered phase and significantly counteract the phase-transition entropy increase resulting from other factors. Furthermore, the tendency for neighboring molecules to be orientationally ordered is markedly local, consequently inhibiting the formation of extensive polar nanodomains at both low and high temperatures. This theoretical investigation not only advances the fundamental knowledge of HOIP but also establishes physically insightful connections with contemporary technological applications like photovoltaics, solid-state cooling, and energy storage.

Abstract Image

杂化有机-无机钙钛矿的取向紊乱和分子相关性:从基本见解到技术应用
杂化有机-无机钙钛矿(HOIP)近年来作为一种非常有前途的半导体材料出现在广泛的光电和能源应用中。然而,有机组分的旋转动力学和许多分子之间的相互依赖性,可能会强烈影响HOIP的功能特性,目前还没有完全了解。在本研究中,我们通过全面的分子动力学模拟和熵计算,定量分析了原型钙钛矿CH3NH3PbI3 (MAPI)的取向无序性和分子相关性。我们发现,除了通常的振动和取向贡献外,围绕C-N轴的刚性分子旋转和相邻分子之间的相关性显著地贡献了与温度诱导的有序-无序相变相关的熵增量,ΔSt。在低t有序相和高t无序相中,分子构象变化同样不常见,并且对ΔSt没有影响。相反,角自由度和振动自由度之间的耦合在高t无序相中得到了极大的加强,并显著抵消了其他因素导致的相变熵增加。此外,相邻分子取向有序的倾向是明显局部的,因此在低温和高温下都抑制了广泛极性纳米结构域的形成。这项理论研究不仅推进了HOIP的基础知识,而且还与光伏、固态冷却和能量存储等当代技术应用建立了物理上的深刻联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信