In vivo hyperphosphorylation of tau is associated with synaptic loss and behavioral abnormalities in the absence of tau seeds

IF 21.2 1区 医学 Q1 NEUROSCIENCES
Naoto Watamura, Martha S. Foiani, Sumi Bez, Mathieu Bourdenx, Alessia Santambrogio, Claire Frodsham, Elena Camporesi, Gunnar Brinkmalm, Henrik Zetterberg, Saisha Patel, Naoko Kamano, Mika Takahashi, Javier Rueda-Carrasco, Loukia Katsouri, Stephanie Fowler, Emir Turkes, Shoko Hashimoto, Hiroki Sasaguri, Takashi Saito, AFM Saiful Islam, Seico Benner, Toshihiro Endo, Katsuji Kobayashi, Chiho Ishida, Michele Vendruscolo, Masahito Yamada, Karen E. Duff, Takaomi C. Saido
{"title":"In vivo hyperphosphorylation of tau is associated with synaptic loss and behavioral abnormalities in the absence of tau seeds","authors":"Naoto Watamura, Martha S. Foiani, Sumi Bez, Mathieu Bourdenx, Alessia Santambrogio, Claire Frodsham, Elena Camporesi, Gunnar Brinkmalm, Henrik Zetterberg, Saisha Patel, Naoko Kamano, Mika Takahashi, Javier Rueda-Carrasco, Loukia Katsouri, Stephanie Fowler, Emir Turkes, Shoko Hashimoto, Hiroki Sasaguri, Takashi Saito, AFM Saiful Islam, Seico Benner, Toshihiro Endo, Katsuji Kobayashi, Chiho Ishida, Michele Vendruscolo, Masahito Yamada, Karen E. Duff, Takaomi C. Saido","doi":"10.1038/s41593-024-01829-7","DOIUrl":null,"url":null,"abstract":"<p>Tau pathology is a hallmark of several neurodegenerative diseases, including frontotemporal dementia and Alzheimer’s disease. However, the sequence of events and the form of tau that confers toxicity are still unclear, due in large part to the lack of physiological models of tauopathy initiation and progression in which to test hypotheses. We have developed a series of targeted mice expressing frontotemporal-dementia-causing mutations in the humanized <i>MAPT</i> gene to investigate the earliest stages of tauopathy. <i>MAPT</i><sup>Int10+3G&gt;A</sup> and <i>MAPT</i><sup>S305N;Int10+3G&gt;A</sup> lines show abundant hyperphosphorylated tau in the hippocampus and entorhinal cortex, but they do not develop seed-competent fibrillar structures. Accumulation of hyperphosphorylated tau was accompanied by neurite degeneration, loss of viable synapses and indicators of behavioral abnormalities. Our results demonstrate that neuronal toxicity can occur in the absence of fibrillar, higher-order structures and that tau hyperphosphorylation is probably involved in the earliest etiological events in tauopathies showing isoform ratio imbalance.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"126 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-024-01829-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tau pathology is a hallmark of several neurodegenerative diseases, including frontotemporal dementia and Alzheimer’s disease. However, the sequence of events and the form of tau that confers toxicity are still unclear, due in large part to the lack of physiological models of tauopathy initiation and progression in which to test hypotheses. We have developed a series of targeted mice expressing frontotemporal-dementia-causing mutations in the humanized MAPT gene to investigate the earliest stages of tauopathy. MAPTInt10+3G>A and MAPTS305N;Int10+3G>A lines show abundant hyperphosphorylated tau in the hippocampus and entorhinal cortex, but they do not develop seed-competent fibrillar structures. Accumulation of hyperphosphorylated tau was accompanied by neurite degeneration, loss of viable synapses and indicators of behavioral abnormalities. Our results demonstrate that neuronal toxicity can occur in the absence of fibrillar, higher-order structures and that tau hyperphosphorylation is probably involved in the earliest etiological events in tauopathies showing isoform ratio imbalance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信