Heavy Neutral Leptons via Axionlike Particles at Neutrino Facilities

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Asli M. Abdullahi, André de Gouvêa, Bhaskar Dutta, Ian M. Shoemaker, Zahra Tabrizi
{"title":"Heavy Neutral Leptons via Axionlike Particles at Neutrino Facilities","authors":"Asli M. Abdullahi, André de Gouvêa, Bhaskar Dutta, Ian M. Shoemaker, Zahra Tabrizi","doi":"10.1103/physrevlett.133.261802","DOIUrl":null,"url":null,"abstract":"Heavy neutral leptons (HNLs) are often among the hypothetical ingredients behind nonzero neutrino masses. If sufficiently light, they can be produced and detected in fixed-target-like experiments. We show that if the HNLs belong to a richer—but rather generic—dark sector, their production mechanism can deviate dramatically from expectations associated with the standard-model weak interactions. In more detail, we postulate that the dark sector contains an axionlike particle (ALP) that naturally decays into HNLs. Since ALPs mix with the pseudoscalar hadrons, the HNL flux might be predominantly associated with the production of neutral mesons (e.g., π</a:mi></a:mrow>0</a:mn></a:mrow></a:msup></a:mrow></a:math>, <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>η</c:mi></c:math>) as opposed to charge hadrons (e.g., <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>π</e:mi><e:mo>±</e:mo></e:msup></e:math>, <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msup><g:mi>K</g:mi><g:mo>±</g:mo></g:msup></g:math>). In this case, the physics responsible for HNL production and decay are not directly related and experiments like DUNE might be sensitive to HNLs that are too weakly coupled to the standard model to be produced via weak interactions, as is generically the case of HNLs that play a direct role in the type-I seesaw mechanism. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"137 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.261802","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy neutral leptons (HNLs) are often among the hypothetical ingredients behind nonzero neutrino masses. If sufficiently light, they can be produced and detected in fixed-target-like experiments. We show that if the HNLs belong to a richer—but rather generic—dark sector, their production mechanism can deviate dramatically from expectations associated with the standard-model weak interactions. In more detail, we postulate that the dark sector contains an axionlike particle (ALP) that naturally decays into HNLs. Since ALPs mix with the pseudoscalar hadrons, the HNL flux might be predominantly associated with the production of neutral mesons (e.g., π0, η) as opposed to charge hadrons (e.g., π±, K±). In this case, the physics responsible for HNL production and decay are not directly related and experiments like DUNE might be sensitive to HNLs that are too weakly coupled to the standard model to be produced via weak interactions, as is generically the case of HNLs that play a direct role in the type-I seesaw mechanism. Published by the American Physical Society 2024
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信