Steering perovskite precursor solutions for multijunction photovoltaics

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2024-12-23 DOI:10.1038/s41586-024-08546-y
Shuaifeng Hu, Junke Wang, Pei Zhao, Jorge Pascual, Jianan Wang, Florine Rombach, Akash Dasgupta, Wentao Liu, Minh Anh Truong, He Zhu, Manuel Kober-Czerny, James N. Drysdale, Joel A. Smith, Zhongcheng Yuan, Guus J. W. Aalbers, Nick R. M. Schipper, Jin Yao, Kyohei Nakano, Silver-Hamill Turren-Cruz, André Dallmann, M. Greyson Christoforo, James M. Ball, David P. McMeekin, Karl-Augustin Zaininger, Zonghao Liu, Nakita K. Noel, Keisuke Tajima, Wei Chen, Masahiro Ehara, René A. J. Janssen, Atsushi Wakamiya, Henry J. Snaith
{"title":"Steering perovskite precursor solutions for multijunction photovoltaics","authors":"Shuaifeng Hu, Junke Wang, Pei Zhao, Jorge Pascual, Jianan Wang, Florine Rombach, Akash Dasgupta, Wentao Liu, Minh Anh Truong, He Zhu, Manuel Kober-Czerny, James N. Drysdale, Joel A. Smith, Zhongcheng Yuan, Guus J. W. Aalbers, Nick R. M. Schipper, Jin Yao, Kyohei Nakano, Silver-Hamill Turren-Cruz, André Dallmann, M. Greyson Christoforo, James M. Ball, David P. McMeekin, Karl-Augustin Zaininger, Zonghao Liu, Nakita K. Noel, Keisuke Tajima, Wei Chen, Masahiro Ehara, René A. J. Janssen, Atsushi Wakamiya, Henry J. Snaith","doi":"10.1038/s41586-024-08546-y","DOIUrl":null,"url":null,"abstract":"Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells1–8, for which improving narrow-bandgap (NBG) tin–lead perovskites is critical for thin-film devices9. Here, with a focus on understanding the chemistry of tin–lead perovskite precursor solutions, we find that Sn(ii) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallization and ammonium in improving film optoelectronic properties. Materials that combine these two functional groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules. Our enhanced tin–lead perovskite layer allows us to fabricate solar cells with PCEs of 23.9%, 29.7% (certified 29.26%) and 28.7% for single-junction, double-junction and triple-junction devices, respectively. Our 1-cm2 triple-junction devices show PCEs of 28.4% (certified 27.28%). Encapsulated triple-junction cells maintain 80% of their initial efficiencies after 860 h maximum power point tracking (MPPT) in ambient. We further fabricate quadruple-junction devices and obtain PCEs of 27.9% with the highest open-circuit voltage of 4.94 V. This work establishes a new benchmark for multijunction PVs. Understanding the chemistry of perovskite precursor solutions enables improved film optoelectronic properties, allowing the fabrication of multijunction solar cells achieving power conversion efficiencies beyond the radiative limit of single-junction cells.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"639 8053","pages":"93-101"},"PeriodicalIF":50.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08546-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08546-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells1–8, for which improving narrow-bandgap (NBG) tin–lead perovskites is critical for thin-film devices9. Here, with a focus on understanding the chemistry of tin–lead perovskite precursor solutions, we find that Sn(ii) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallization and ammonium in improving film optoelectronic properties. Materials that combine these two functional groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules. Our enhanced tin–lead perovskite layer allows us to fabricate solar cells with PCEs of 23.9%, 29.7% (certified 29.26%) and 28.7% for single-junction, double-junction and triple-junction devices, respectively. Our 1-cm2 triple-junction devices show PCEs of 28.4% (certified 27.28%). Encapsulated triple-junction cells maintain 80% of their initial efficiencies after 860 h maximum power point tracking (MPPT) in ambient. We further fabricate quadruple-junction devices and obtain PCEs of 27.9% with the highest open-circuit voltage of 4.94 V. This work establishes a new benchmark for multijunction PVs. Understanding the chemistry of perovskite precursor solutions enables improved film optoelectronic properties, allowing the fabrication of multijunction solar cells achieving power conversion efficiencies beyond the radiative limit of single-junction cells.

Abstract Image

多结光伏电池的钙钛矿前驱体解决方案
多结光伏电池(pv)由于其超越单结电池辐射极限的功率转换效率(pce)的卓越能力而日益突出,其中改进窄带隙锡铅钙钛矿对薄膜器件至关重要。通过对锡铅钙钛矿前驱体溶液化学性质的研究,我们发现Sn(II)在与前驱体和添加剂的相互作用中占主导地位,并揭示了羧酸在调节溶液胶体性质和薄膜结晶方面的独特作用,以及铵在改善薄膜光电性能方面的独特作用。结合这两个官能团的材料,氨基酸盐,大大提高了钙钛矿薄膜的半导体质量和均匀性,超过了单个官能团作为单独分子的一部分引入时的效果。我们的增强锡铅钙钛矿层使我们能够制造pce分别为23.9,29.7(认证29.26%)和28.7%的单结,双结和三结设备的太阳能电池。我们的1-cm2三结器件的pce为28.4%(认证为27.28%)。封装的三结电池在环境中860小时最大功率点跟踪后保持80%的初始效率。我们进一步制作了四结器件,获得了27.9%的pce,最高开路电压为4.94 V。这项工作为多结pv建立了一个新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信