Holographic-(V)AE: An end-to-end SO(3)-equivariant (variational) autoencoder in Fourier space.

Gian Marco Visani, Michael N Pun, Arman Angaji, Armita Nourmohammad
{"title":"Holographic-(V)AE: An end-to-end SO(3)-equivariant (variational) autoencoder in Fourier space.","authors":"Gian Marco Visani, Michael N Pun, Arman Angaji, Armita Nourmohammad","doi":"10.1103/physrevresearch.6.023006","DOIUrl":null,"url":null,"abstract":"<p><p>Group-equivariant neural networks have emerged as an efficient approach to model complex data, using generalized convolutions that respect the relevant symmetries of a system. These techniques have made advances in both the supervised learning tasks for classification and regression, and the unsupervised tasks to generate new data. However, little work has been done in leveraging the symmetry-aware expressive representations that could be extracted from these approaches. Here, we present <i>holographic</i>-(variational) autoencoder [H-(V)AE], a fully end-to-end SO(3)-equivariant (variational) autoencoder in Fourier space, suitable for unsupervised learning and generation of data distributed around a specified origin in 3D. H-(V)AE is trained to reconstruct the spherical Fourier encoding of data, learning in the process a low-dimensional representation of the data (i.e., a latent space) with a maximally informative rotationally invariant embedding alongside an equivariant frame describing the orientation of the data. We extensively test the performance of H-(V)AE on diverse datasets. We show that the learned latent space efficiently encodes the categorical features of spherical images. Moreover, the low-dimensional representations learned by H-VAE can be used for downstream data-scarce tasks. Specifically, we show that H-(V)AE's latent space can be used to extract compact embeddings for protein structure microenvironments, and when paired with a random forest regressor, it enables state-of-the-art predictions of protein-ligand binding affinity.</p>","PeriodicalId":520315,"journal":{"name":"Physical review research","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.023006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Group-equivariant neural networks have emerged as an efficient approach to model complex data, using generalized convolutions that respect the relevant symmetries of a system. These techniques have made advances in both the supervised learning tasks for classification and regression, and the unsupervised tasks to generate new data. However, little work has been done in leveraging the symmetry-aware expressive representations that could be extracted from these approaches. Here, we present holographic-(variational) autoencoder [H-(V)AE], a fully end-to-end SO(3)-equivariant (variational) autoencoder in Fourier space, suitable for unsupervised learning and generation of data distributed around a specified origin in 3D. H-(V)AE is trained to reconstruct the spherical Fourier encoding of data, learning in the process a low-dimensional representation of the data (i.e., a latent space) with a maximally informative rotationally invariant embedding alongside an equivariant frame describing the orientation of the data. We extensively test the performance of H-(V)AE on diverse datasets. We show that the learned latent space efficiently encodes the categorical features of spherical images. Moreover, the low-dimensional representations learned by H-VAE can be used for downstream data-scarce tasks. Specifically, we show that H-(V)AE's latent space can be used to extract compact embeddings for protein structure microenvironments, and when paired with a random forest regressor, it enables state-of-the-art predictions of protein-ligand binding affinity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信