Integrated proteomics and connectivity map-based analysis reveal compounds with a potential antiviral effect against Japanese encephalitis virus infection in a mouse model.

Rohit Soni, Naina Soni, Abhijit Paul, Aarti Tripathi, Samrat Chatterjee, Arup Banerjee
{"title":"Integrated proteomics and connectivity map-based analysis reveal compounds with a potential antiviral effect against Japanese encephalitis virus infection in a mouse model.","authors":"Rohit Soni, Naina Soni, Abhijit Paul, Aarti Tripathi, Samrat Chatterjee, Arup Banerjee","doi":"10.1111/febs.17370","DOIUrl":null,"url":null,"abstract":"<p><p>Japanese encephalitis virus (JEV) is the leading causative agent of viral encephalitis in India and contributes to a significant disease burden in South Asian countries. However, no antiviral treatment is available against JEV-induced encephalitis, highlighting the urgent need for novel therapeutic approaches. Repurposing or repositioning drugs was found to be more economical and practical in the current drug development scenario. The present study aimed to develop a host-directed strategy through a computational drug repurposing approach. As part of the strategy, we first generated a dynamic signature of differentially expressed JEV infection-associated proteins in mice brains through a semiquantitative proteomics approach. With the help of the Connectivity Map (CMap) analysis, we narrowed down the lists of drugs with a high negative CMap score (-70 or lower). Based on the CMap score, we chose the top three compounds (Tipifarnib, Ly303511 and MDL11939) with CMap scores of -91.83, -88.18 and -91.15, respectively. The antiviral potential of these three compounds was further compared in both JEV-infected mouse neuroblastoma cells and C57BL/6 mice. Oral administration of Ly303511 and MDL11939, alone or in combination, showed improved outcomes (e.g. delayed death, increased survival, and less viral load than Tipifarnib alone or combined). The JEV-infected mice survived upon drug treatment, effectively reducing viral load and reversing the antiviral signature. Our results highlight Ly303511 and MDL11939 as promising host-targeted inhibitors of JEV infection and pathogenesis. Moreover, our results favor the combination of Ly303511 and MDL11939 therapy to improve clinical symptoms and reduce JEV-induced damage, thus warranting inclusion in clinical studies.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Japanese encephalitis virus (JEV) is the leading causative agent of viral encephalitis in India and contributes to a significant disease burden in South Asian countries. However, no antiviral treatment is available against JEV-induced encephalitis, highlighting the urgent need for novel therapeutic approaches. Repurposing or repositioning drugs was found to be more economical and practical in the current drug development scenario. The present study aimed to develop a host-directed strategy through a computational drug repurposing approach. As part of the strategy, we first generated a dynamic signature of differentially expressed JEV infection-associated proteins in mice brains through a semiquantitative proteomics approach. With the help of the Connectivity Map (CMap) analysis, we narrowed down the lists of drugs with a high negative CMap score (-70 or lower). Based on the CMap score, we chose the top three compounds (Tipifarnib, Ly303511 and MDL11939) with CMap scores of -91.83, -88.18 and -91.15, respectively. The antiviral potential of these three compounds was further compared in both JEV-infected mouse neuroblastoma cells and C57BL/6 mice. Oral administration of Ly303511 and MDL11939, alone or in combination, showed improved outcomes (e.g. delayed death, increased survival, and less viral load than Tipifarnib alone or combined). The JEV-infected mice survived upon drug treatment, effectively reducing viral load and reversing the antiviral signature. Our results highlight Ly303511 and MDL11939 as promising host-targeted inhibitors of JEV infection and pathogenesis. Moreover, our results favor the combination of Ly303511 and MDL11939 therapy to improve clinical symptoms and reduce JEV-induced damage, thus warranting inclusion in clinical studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信