End-to-end multi-scale residual network with parallel attention mechanism for fault diagnosis under noise and small samples

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yawei Sun , Hongfeng Tao , Vladimir Stojanovic
{"title":"End-to-end multi-scale residual network with parallel attention mechanism for fault diagnosis under noise and small samples","authors":"Yawei Sun ,&nbsp;Hongfeng Tao ,&nbsp;Vladimir Stojanovic","doi":"10.1016/j.isatra.2024.12.023","DOIUrl":null,"url":null,"abstract":"<div><div>When the fault diagnosis datasets contains noise disturbances, small samples, compound faults, and mixed conditions, the feature extraction capability of the neural network will face significant challenges. This paper proposes an end-to-end multi-scale residual network with parallel attention mechanism to address the above complex problems. Firstly, the adaptive mixing pooling method is employed to facilitate the model’s ability to retain effective feature information present within the timing signal. Then, we propose parallel attention mechanism that can obtain the attention information in both channel and temporal domain of the input features. Moreover, the multi-scale feature parallel fusion can better capture effective information contained in different scale features. The experimental results demonstrate that the proposed model attains <span><math><mrow><mn>99</mn><mo>.</mo><mn>67</mn></mrow></math></span> <span><math><mtext>%</mtext></math></span>, <span><math><mrow><mn>99</mn><mo>.</mo><mn>83</mn></mrow></math></span> <span><math><mtext>%</mtext></math></span>, <span><math><mrow><mn>99</mn><mo>.</mo><mn>71</mn></mrow></math></span> <span><math><mtext>%</mtext></math></span> and <span><math><mrow><mn>99</mn><mo>.</mo><mn>70</mn></mrow></math></span> <span><math><mtext>%</mtext></math></span> accuracy on four datasets comprising small samples. Furthermore, the accuracy of <span><math><mrow><mn>60</mn></mrow></math></span> <span><math><mtext>%</mtext></math></span> to <span><math><mrow><mn>80</mn></mrow></math></span> <span><math><mtext>%</mtext></math></span> is sustained when the noise level is increased to 0dB.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"157 ","pages":"Pages 419-433"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824006116","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

When the fault diagnosis datasets contains noise disturbances, small samples, compound faults, and mixed conditions, the feature extraction capability of the neural network will face significant challenges. This paper proposes an end-to-end multi-scale residual network with parallel attention mechanism to address the above complex problems. Firstly, the adaptive mixing pooling method is employed to facilitate the model’s ability to retain effective feature information present within the timing signal. Then, we propose parallel attention mechanism that can obtain the attention information in both channel and temporal domain of the input features. Moreover, the multi-scale feature parallel fusion can better capture effective information contained in different scale features. The experimental results demonstrate that the proposed model attains 99.67 %, 99.83 %, 99.71 % and 99.70 % accuracy on four datasets comprising small samples. Furthermore, the accuracy of 60 % to 80 % is sustained when the noise level is increased to 0dB.
基于并行关注机制的端到端多尺度残差网络在噪声和小样本条件下的故障诊断。
当故障诊断数据集包含噪声干扰、小样本、复合故障和混合条件时,神经网络的特征提取能力将面临重大挑战。本文提出了一种具有并行关注机制的端到端多尺度残差网络来解决上述复杂问题。首先,采用自适应混合池化方法,使模型能够保留时序信号中存在的有效特征信息;然后,我们提出了一种并行注意机制,可以在输入特征的通道和时域同时获取注意信息。此外,多尺度特征并行融合可以更好地捕获不同尺度特征中包含的有效信息。实验结果表明,该模型在小样本数据集上的准确率分别为99.67%、99.83%、99.71%和99.70%。当噪声电平提高到0dB时,精度仍保持在60% ~ 80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信