{"title":"A generalized maximum correntropy based constraint adaptive filtering: Constraint-forcing and performance analyses","authors":"Ji Zhao , Wenyue Li , Qiang Li , Hongbin Zhang","doi":"10.1016/j.isatra.2024.12.016","DOIUrl":null,"url":null,"abstract":"<div><div>The quadratic cost functions, exemplified by mean-square-error, often exhibit limited robustness and flexibility when confronted with impulsive noise contamination. In contrast, the generalized maximum correntropy (GMC) criterion, serving as a robust nonlinear similarity measure, offers superior performance in such scenarios. In this paper, we develop a recursive constrained adaptive filtering algorithm named recursive generalized maximum correntropy with a forgetting factor (FF-RCGMC). This algorithm integrates the exponential weighted GMC criterion with a linear constraint framework based on least-squares. However, the lack of constraint information during the learning process may lead to divergence or malfunctioning of FF-RCGMC after a certain number of iterations because of round-off errors. To rectify this deficiency, we introduce a constraint-forcing strategy into FF-RCGMC, resulting in a more stable variant termed robust type constraint-forcing FF-RCGMC (CFFF-RCGMC). In the context of CFFF-RCGMC, we embark on a thorough examination of its computational burden, encompassing both mean and mean-square stability analyses, along with an in-depth exploration of its transient and steady-state filtering characteristics under a set of plausible assumptions. Our simulation-based evaluations, specifically tailored for system identification tasks within non-Gaussian noisy environments, unequivocally underscore the excellent performance of CFFF-RCGMC when against its relevant algorithmic counterparts.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"157 ","pages":"Pages 199-212"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824006025","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The quadratic cost functions, exemplified by mean-square-error, often exhibit limited robustness and flexibility when confronted with impulsive noise contamination. In contrast, the generalized maximum correntropy (GMC) criterion, serving as a robust nonlinear similarity measure, offers superior performance in such scenarios. In this paper, we develop a recursive constrained adaptive filtering algorithm named recursive generalized maximum correntropy with a forgetting factor (FF-RCGMC). This algorithm integrates the exponential weighted GMC criterion with a linear constraint framework based on least-squares. However, the lack of constraint information during the learning process may lead to divergence or malfunctioning of FF-RCGMC after a certain number of iterations because of round-off errors. To rectify this deficiency, we introduce a constraint-forcing strategy into FF-RCGMC, resulting in a more stable variant termed robust type constraint-forcing FF-RCGMC (CFFF-RCGMC). In the context of CFFF-RCGMC, we embark on a thorough examination of its computational burden, encompassing both mean and mean-square stability analyses, along with an in-depth exploration of its transient and steady-state filtering characteristics under a set of plausible assumptions. Our simulation-based evaluations, specifically tailored for system identification tasks within non-Gaussian noisy environments, unequivocally underscore the excellent performance of CFFF-RCGMC when against its relevant algorithmic counterparts.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.