A generalized maximum correntropy based constraint adaptive filtering: Constraint-forcing and performance analyses.

Ji Zhao, Wenyue Li, Qiang Li, Hongbin Zhang
{"title":"A generalized maximum correntropy based constraint adaptive filtering: Constraint-forcing and performance analyses.","authors":"Ji Zhao, Wenyue Li, Qiang Li, Hongbin Zhang","doi":"10.1016/j.isatra.2024.12.016","DOIUrl":null,"url":null,"abstract":"<p><p>The quadratic cost functions, exemplified by mean-square-error, often exhibit limited robustness and flexibility when confronted with impulsive noise contamination. In contrast, the generalized maximum correntropy (GMC) criterion, serving as a robust nonlinear similarity measure, offers superior performance in such scenarios. In this paper, we develop a recursive constrained adaptive filtering algorithm named recursive generalized maximum correntropy with a forgetting factor (FF-RCGMC). This algorithm integrates the exponential weighted GMC criterion with a linear constraint framework based on least-squares. However, the lack of constraint information during the learning process may lead to divergence or malfunctioning of FF-RCGMC after a certain number of iterations because of round-off errors. To rectify this deficiency, we introduce a constraint-forcing strategy into FF-RCGMC, resulting in a more stable variant termed robust type constraint-forcing FF-RCGMC (CFFF-RCGMC). In the context of CFFF-RCGMC, we embark on a thorough examination of its computational burden, encompassing both mean and mean-square stability analyses, along with an in-depth exploration of its transient and steady-state filtering characteristics under a set of plausible assumptions. Our simulation-based evaluations, specifically tailored for system identification tasks within non-Gaussian noisy environments, unequivocally underscore the excellent performance of CFFF-RCGMC when against its relevant algorithmic counterparts.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.12.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quadratic cost functions, exemplified by mean-square-error, often exhibit limited robustness and flexibility when confronted with impulsive noise contamination. In contrast, the generalized maximum correntropy (GMC) criterion, serving as a robust nonlinear similarity measure, offers superior performance in such scenarios. In this paper, we develop a recursive constrained adaptive filtering algorithm named recursive generalized maximum correntropy with a forgetting factor (FF-RCGMC). This algorithm integrates the exponential weighted GMC criterion with a linear constraint framework based on least-squares. However, the lack of constraint information during the learning process may lead to divergence or malfunctioning of FF-RCGMC after a certain number of iterations because of round-off errors. To rectify this deficiency, we introduce a constraint-forcing strategy into FF-RCGMC, resulting in a more stable variant termed robust type constraint-forcing FF-RCGMC (CFFF-RCGMC). In the context of CFFF-RCGMC, we embark on a thorough examination of its computational burden, encompassing both mean and mean-square stability analyses, along with an in-depth exploration of its transient and steady-state filtering characteristics under a set of plausible assumptions. Our simulation-based evaluations, specifically tailored for system identification tasks within non-Gaussian noisy environments, unequivocally underscore the excellent performance of CFFF-RCGMC when against its relevant algorithmic counterparts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信