Exploring the Versatility of Spiking Neural Networks: Applications Across Diverse Scenarios.

Matteo Cavaleri, Claudio Zandron
{"title":"Exploring the Versatility of Spiking Neural Networks: Applications Across Diverse Scenarios.","authors":"Matteo Cavaleri, Claudio Zandron","doi":"10.1142/S0129065725500078","DOIUrl":null,"url":null,"abstract":"<p><p>In the last few decades, Artificial Neural Networks have become more and more important, evolving into a powerful tool to implement learning algorithms. Spiking neural networks represent the third generation of Artificial Neural Networks; they have earned growing significance due to their remarkable achievements in pattern recognition, finding extensive utility across diverse domains such as e.g. diagnostic medicine. Usually, Spiking Neural Networks are slightly less accurate than other Artificial Neural Networks, but they require a reduced amount of energy to perform calculations; this amount of energy further reduces in a very significant manner if they are implemented on hardware specifically designed for them, like neuromorphic hardware. In this work, we focus on exploring the versatility of Spiking Neural Networks and their potential applications across a range of scenarios by exploiting their adaptability and dynamic processing capabilities, which make them suitable for various tasks. A first rough network is designed based on the dataset's general attributes; the network is then refined through an extensive grid search algorithm to identify the optimal values for hyperparameters. This dual-step process ensures that the Spiking Neural Network can be tailored to diverse and potentially very different situations in a direct and intuitive manner. We test this by considering three different scenarios: epileptic seizure detection, both considering binary and multi-classification tasks, as well as wine classification. The proposed methodology turned out to be highly effective in binary class scenarios: the Spiking Neural Networks models achieved significantly lower energy consumption compared to Artificial Neural Networks while approaching nearly 100% accuracy. In the case of multi-class classification, the model achieved an accuracy of approximately 90%, thus indicating that it can still be further improved.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550007"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the last few decades, Artificial Neural Networks have become more and more important, evolving into a powerful tool to implement learning algorithms. Spiking neural networks represent the third generation of Artificial Neural Networks; they have earned growing significance due to their remarkable achievements in pattern recognition, finding extensive utility across diverse domains such as e.g. diagnostic medicine. Usually, Spiking Neural Networks are slightly less accurate than other Artificial Neural Networks, but they require a reduced amount of energy to perform calculations; this amount of energy further reduces in a very significant manner if they are implemented on hardware specifically designed for them, like neuromorphic hardware. In this work, we focus on exploring the versatility of Spiking Neural Networks and their potential applications across a range of scenarios by exploiting their adaptability and dynamic processing capabilities, which make them suitable for various tasks. A first rough network is designed based on the dataset's general attributes; the network is then refined through an extensive grid search algorithm to identify the optimal values for hyperparameters. This dual-step process ensures that the Spiking Neural Network can be tailored to diverse and potentially very different situations in a direct and intuitive manner. We test this by considering three different scenarios: epileptic seizure detection, both considering binary and multi-classification tasks, as well as wine classification. The proposed methodology turned out to be highly effective in binary class scenarios: the Spiking Neural Networks models achieved significantly lower energy consumption compared to Artificial Neural Networks while approaching nearly 100% accuracy. In the case of multi-class classification, the model achieved an accuracy of approximately 90%, thus indicating that it can still be further improved.

探索脉冲神经网络的多功能性:跨不同场景的应用。
在过去的几十年里,人工神经网络变得越来越重要,发展成为实现学习算法的强大工具。脉冲神经网络代表了第三代人工神经网络;由于在模式识别方面取得的显著成就,它们已经获得了越来越多的意义,在诊断医学等不同领域得到了广泛的应用。通常,脉冲神经网络比其他人工神经网络稍微不那么精确,但它们需要更少的能量来执行计算;如果它们在专门为它们设计的硬件上实现,比如神经形态硬件,那么这种能量会以非常显著的方式进一步减少。在这项工作中,我们专注于探索脉冲神经网络的多功能性及其在一系列场景中的潜在应用,通过利用它们的适应性和动态处理能力,使它们适合于各种任务。基于数据集的一般属性设计了第一个粗糙网络;然后通过广泛的网格搜索算法对网络进行细化,以确定超参数的最优值。这种双步骤过程确保了spike神经网络可以以直接和直观的方式定制各种可能非常不同的情况。我们通过考虑三种不同的场景来测试这一点:癫痫发作检测,同时考虑二元和多分类任务,以及葡萄酒分类。所提出的方法被证明在二元类场景中非常有效:与人工神经网络相比,峰值神经网络模型的能耗显著降低,同时准确率接近100%。在多类分类的情况下,该模型达到了约90%的准确率,表明该模型仍有进一步改进的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信