Cell-type-resolved chromatin accessibility in the human intestine identifies complex regulatory programs and clarifies genetic associations in Crohn's disease.

Yu Zhao, Ran Zhou, Zepeng Mu, Peter Carbonetto, Xiaoyuan Zhong, Bingqing Xie, Kaixuan Luo, Candace M Cham, Jason Koval, Xin He, Andrew W Dahl, Xuanyao Liu, Eugene B Chang, Anindita Basu, Sebastian Pott
{"title":"Cell-type-resolved chromatin accessibility in the human intestine identifies complex regulatory programs and clarifies genetic associations in Crohn's disease.","authors":"Yu Zhao, Ran Zhou, Zepeng Mu, Peter Carbonetto, Xiaoyuan Zhong, Bingqing Xie, Kaixuan Luo, Candace M Cham, Jason Koval, Xin He, Andrew W Dahl, Xuanyao Liu, Eugene B Chang, Anindita Basu, Sebastian Pott","doi":"10.1101/2024.12.10.24318718","DOIUrl":null,"url":null,"abstract":"<p><p>Crohn's disease (CD) is a complex inflammatory bowel disease resulting from an interplay of genetic, microbial, and environmental factors. Cell-type-specific contributions to CD etiology and genetic risk are incompletely understood. Here we built a comprehensive atlas of cell-type- resolved chromatin accessibility comprising 557,310 candidate cis-regulatory elements (cCREs) in terminal ileum and ascending colon from patients with active and inactive CD and healthy controls. Using this atlas, we identified cell-type-, anatomic location-, and context-specific cCREs and characterized the regulatory programs underlying inflammatory responses in the intestinal mucosa of CD patients. Genetic variants that disrupt binding motifs of cell-type-specific transcription factors significantly affected chromatin accessibility in specific mucosal cell types. We found that CD heritability is primarily enriched in immune cell types. However, using fine- mapped non-coding CD variants we identified 29 variants located within cCREs several of which were accessible in epithelial and stromal cells implicating cell types from additional lineages in mediating CD risk in some loci. Our atlas provides a comprehensive resource to study gene regulatory effects in CD and health, and highlights the cellular complexity underlying CD risk.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.10.24318718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crohn's disease (CD) is a complex inflammatory bowel disease resulting from an interplay of genetic, microbial, and environmental factors. Cell-type-specific contributions to CD etiology and genetic risk are incompletely understood. Here we built a comprehensive atlas of cell-type- resolved chromatin accessibility comprising 557,310 candidate cis-regulatory elements (cCREs) in terminal ileum and ascending colon from patients with active and inactive CD and healthy controls. Using this atlas, we identified cell-type-, anatomic location-, and context-specific cCREs and characterized the regulatory programs underlying inflammatory responses in the intestinal mucosa of CD patients. Genetic variants that disrupt binding motifs of cell-type-specific transcription factors significantly affected chromatin accessibility in specific mucosal cell types. We found that CD heritability is primarily enriched in immune cell types. However, using fine- mapped non-coding CD variants we identified 29 variants located within cCREs several of which were accessible in epithelial and stromal cells implicating cell types from additional lineages in mediating CD risk in some loci. Our atlas provides a comprehensive resource to study gene regulatory effects in CD and health, and highlights the cellular complexity underlying CD risk.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信