MMORF-FSL's MultiMOdal Registration Framework.

Frederik J Lange, Christoph Arthofer, Andreas Bartsch, Gwenaëlle Douaud, Paul McCarthy, Stephen M Smith, Jesper L R Andersson
{"title":"MMORF-FSL's MultiMOdal Registration Framework.","authors":"Frederik J Lange, Christoph Arthofer, Andreas Bartsch, Gwenaëlle Douaud, Paul McCarthy, Stephen M Smith, Jesper L R Andersson","doi":"10.1162/imag_a_00100","DOIUrl":null,"url":null,"abstract":"<p><p>We present MMORF-FSL's MultiMOdal Registration Framework-a newly released nonlinear image registration tool designed primarily for application to magnetic resonance imaging (MRI) images of the brain. MMORF is capable of simultaneously optimising both displacement and rotational transformations within a single registration framework by leveraging rich information from multiple scalar and tensor modalities. The regularisation employed in MMORF promotes local rigidity in the deformation, and we have previously demonstrated how this effectively controls both shape and size distortion, leading to more biologically plausible warps. The performance of MMORF is benchmarked against three established nonlinear registration methods-FNIRT, ANTs, and DR-TAMAS-across four domains: FreeSurfer label overlap, diffusion tensor imaging (DTI) similarity, task-fMRI cluster mass, and distortion. The evaluation is based on 100 unrelated subjects from the Human Connectome Project (HCP) dataset registered to the Oxford-MultiModal-1 (OMM-1) multimodal template via either the T1w contrast alone or in combination with a DTI/DTI-derived contrast. Results show that MMORF is the most consistently high-performing method across all domains-both in terms of accuracy and levels of distortion. MMORF is available as part of FSL, and its inputs and outputs are fully compatible with existing workflows. We believe that MMORF will be a valuable tool for the neuroimaging community, regardless of the domain of any downstream analysis, providing state-of-the-art registration performance that integrates into the rich and widely adopted suite of analysis tools in FSL.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"2 ","pages":"1-30"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present MMORF-FSL's MultiMOdal Registration Framework-a newly released nonlinear image registration tool designed primarily for application to magnetic resonance imaging (MRI) images of the brain. MMORF is capable of simultaneously optimising both displacement and rotational transformations within a single registration framework by leveraging rich information from multiple scalar and tensor modalities. The regularisation employed in MMORF promotes local rigidity in the deformation, and we have previously demonstrated how this effectively controls both shape and size distortion, leading to more biologically plausible warps. The performance of MMORF is benchmarked against three established nonlinear registration methods-FNIRT, ANTs, and DR-TAMAS-across four domains: FreeSurfer label overlap, diffusion tensor imaging (DTI) similarity, task-fMRI cluster mass, and distortion. The evaluation is based on 100 unrelated subjects from the Human Connectome Project (HCP) dataset registered to the Oxford-MultiModal-1 (OMM-1) multimodal template via either the T1w contrast alone or in combination with a DTI/DTI-derived contrast. Results show that MMORF is the most consistently high-performing method across all domains-both in terms of accuracy and levels of distortion. MMORF is available as part of FSL, and its inputs and outputs are fully compatible with existing workflows. We believe that MMORF will be a valuable tool for the neuroimaging community, regardless of the domain of any downstream analysis, providing state-of-the-art registration performance that integrates into the rich and widely adopted suite of analysis tools in FSL.

MMORF-FSL的多模式注册框架。
我们介绍了MMORF-FSL的多模态配准框架,这是一种新发布的非线性图像配准工具,主要用于脑磁共振成像(MRI)图像。通过利用来自多个标量和张量模态的丰富信息,MMORF能够在单个配准框架内同时优化位移和旋转变换。在MMORF中使用的正则化促进了变形中的局部刚性,我们之前已经证明了这是如何有效地控制形状和大小扭曲的,从而导致更多生物学上合理的翘曲。MMORF的性能与三种已建立的非线性配准方法(fnirt、ANTs和dr - tamas)在四个领域进行了基准测试:FreeSurfer标签重叠、扩散张量成像(DTI)相似性、任务- fmri聚类质量和失真。评估基于100个来自人类连接组项目(HCP)数据集的不相关受试者,这些数据集通过单独的T1w对比或与DTI/DTI衍生的对比结合注册到Oxford-MultiModal-1 (OMM-1)多模态模板。结果表明,MMORF在所有领域中都是最一致的高性能方法——无论是在精度方面还是在失真程度方面。MMORF是FSL的一部分,其输入和输出与现有工作流程完全兼容。我们相信,无论在任何下游分析领域,MMORF都将成为神经影像学社区的一个有价值的工具,提供最先进的注册性能,并集成到FSL中丰富且广泛采用的分析工具套件中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信