Exposure to MC-LR activates the RAF/ERK signaling pathway, leading to renal inflammation and tissue damage in mice.

IF 2.3 4区 医学 Q3 ENVIRONMENTAL SCIENCES
Yiwen Hou, Ying Liu, Yue Yang, Shuaishuai Xu, Fei Yang
{"title":"Exposure to MC-LR activates the RAF/ERK signaling pathway, leading to renal inflammation and tissue damage in mice.","authors":"Yiwen Hou, Ying Liu, Yue Yang, Shuaishuai Xu, Fei Yang","doi":"10.1080/15287394.2024.2435632","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to microcysatin-LR (MC-LR) is known to result in kidney damage, however the underlying mechanisms involved in MC-LR-initiated renal injury are not known. Thus, the aim of this study was to examine the effects of exposure to MC-LR on human embryo kidney (HEK 293) cell <i>in vitro</i> and male C57BL/6 <i>in vivo</i>. In the <i>in vitro</i> study, HEK 293 cells were incubated with MC-LR (20 µM) for 24 hr. Treatment with MC-LR significantly increased the protein expression of RAF and ERK as well as mRNA expression levels of inflammatory cytokines TNF-α, IL-6, and IL-1β. These findings were confirmed when HEK 293 cells were co-incubated with ERK inhibitor U0126 and MC-LR demonstrating a decrease in protein expression of RAF, ERK, and mRNA levels of pro-inflammatory cytokines. Male C57BL/6 mice were intraperitoneally (ip) injected with MC-LR (20 µg/kg) daily for 21 days. Histopathological analysis demonstrated significant glomerular and tubular damage with inflammatory infiltration. The expression levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly elevated following MC-LR treatment. Administration of MC-LR asignificantly enhanced the protein phosphorylation levels of RAF and ERK. Data demonstrated that exposure to MC-LR induced morphological tissue damage and renal inflammatory reactions by activating the RAF/ERK signaling pathway.</p>","PeriodicalId":54758,"journal":{"name":"Journal of Toxicology and Environmental Health-Part A-Current Issues","volume":" ","pages":"301-309"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part A-Current Issues","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15287394.2024.2435632","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Exposure to microcysatin-LR (MC-LR) is known to result in kidney damage, however the underlying mechanisms involved in MC-LR-initiated renal injury are not known. Thus, the aim of this study was to examine the effects of exposure to MC-LR on human embryo kidney (HEK 293) cell in vitro and male C57BL/6 in vivo. In the in vitro study, HEK 293 cells were incubated with MC-LR (20 µM) for 24 hr. Treatment with MC-LR significantly increased the protein expression of RAF and ERK as well as mRNA expression levels of inflammatory cytokines TNF-α, IL-6, and IL-1β. These findings were confirmed when HEK 293 cells were co-incubated with ERK inhibitor U0126 and MC-LR demonstrating a decrease in protein expression of RAF, ERK, and mRNA levels of pro-inflammatory cytokines. Male C57BL/6 mice were intraperitoneally (ip) injected with MC-LR (20 µg/kg) daily for 21 days. Histopathological analysis demonstrated significant glomerular and tubular damage with inflammatory infiltration. The expression levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly elevated following MC-LR treatment. Administration of MC-LR asignificantly enhanced the protein phosphorylation levels of RAF and ERK. Data demonstrated that exposure to MC-LR induced morphological tissue damage and renal inflammatory reactions by activating the RAF/ERK signaling pathway.

暴露于MC-LR会激活RAF/ERK信号通路,导致小鼠肾脏炎症和组织损伤。
已知暴露于微囊藻蛋白- lr (MC-LR)会导致肾脏损伤,但MC-LR引发肾损伤的潜在机制尚不清楚。因此,本研究的目的是研究MC-LR暴露对体外人胚胎肾(HEK 293)细胞和体内男性C57BL/6的影响。体外实验中,HEK 293细胞用MC-LR(20µM)孵育24小时。MC-LR显著提高了RAF和ERK的蛋白表达以及炎症因子TNF-α、IL-6和IL-1β的mRNA表达水平。当HEK 293细胞与ERK抑制剂U0126和MC-LR共孵育时,这些发现得到了证实,表明RAF、ERK的蛋白表达和促炎细胞因子的mRNA水平下降。雄性C57BL/6小鼠每天腹腔注射MC-LR(20µg/kg),持续21天。组织病理学分析显示明显的肾小球和小管损伤伴炎症浸润。在MC-LR治疗后,促炎细胞因子TNF-α、IL-6和IL-1β的表达水平显著升高。MC-LR显著提高了RAF和ERK蛋白磷酸化水平。数据表明,暴露于MC-LR通过激活RAF/ERK信号通路诱导形态学组织损伤和肾脏炎症反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
19.20%
发文量
46
审稿时长
8-16 weeks
期刊介绍: The Journal of Toxicology and Environmental Health, Part A , Current Issues is an authoritative journal that features strictly refereed original research in the field of environmental sciences, public and occupational health, and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信