The effects of foot core exercises and minimalist footwear on foot muscle sizes, foot strength, and biomechanics: A systematic review and meta-analysis
Jean-Louis Peters-Dickie , Christine Detrembleur , Marina Guallar-Bouloc , Marion Rastelli , Sébastien Lobet , Benjamin Hidalgo , Kevin Deschamps
{"title":"The effects of foot core exercises and minimalist footwear on foot muscle sizes, foot strength, and biomechanics: A systematic review and meta-analysis","authors":"Jean-Louis Peters-Dickie , Christine Detrembleur , Marina Guallar-Bouloc , Marion Rastelli , Sébastien Lobet , Benjamin Hidalgo , Kevin Deschamps","doi":"10.1016/j.clinbiomech.2024.106417","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Specific foot exercises and the use of minimalist shoes during running or daily life were suggested to strengthen the intrinsic foot muscles and to modify locomotion biomechanics. We aimed to review the effectiveness of these interventions to modify foot muscle sizes, foot strength, and biomechanical outcomes.</div></div><div><h3>Method</h3><div>PubMed, Embase, Cochrane Library and SportDiscus databases were searched (last update: 12 March 2024). Randomized controlled trials with intervention duration of four weeks or more were included. A random-effect meta-analysis was performed when at least two studies were available for an outcome. Standardized mean differences and corresponding 95 % confidence intervals were reported. The certainty of the evidence was assessed by considering risk of bias, imprecision, inconsistency, and indirectness. The evidence not summarized in the meta-analysis was synthetised.</div></div><div><h3>Findings</h3><div>Twenty-eight trials (1399 participants) were included in the systematic review and seventeen meta-analyses were performed. From meta-analyses, minimalist shoes lead to greater strength of toes 2 to 5 (confidence interval = 0.02 to 0.76), and foot exercises resulted in lower medial longitudinal arch motion during running (confidence interval = 0.08 to 0.82). The certainty of the evidence was low to very low, mainly due to the limited number of available studies and high risk of bias. The systematic synthesis supported exercises and minimalist shoes to increase foot strength, but was conflicting for muscle sizes. The interventions occasionally modified walking and running biomechanical variables.</div></div><div><h3>Interpretation</h3><div>Foot exercises and minimalist shoes may be appropriate to increase foot strength and to induce biomechanical changes during dynamic tasks.</div></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"122 ","pages":"Article 106417"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003324002493","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Specific foot exercises and the use of minimalist shoes during running or daily life were suggested to strengthen the intrinsic foot muscles and to modify locomotion biomechanics. We aimed to review the effectiveness of these interventions to modify foot muscle sizes, foot strength, and biomechanical outcomes.
Method
PubMed, Embase, Cochrane Library and SportDiscus databases were searched (last update: 12 March 2024). Randomized controlled trials with intervention duration of four weeks or more were included. A random-effect meta-analysis was performed when at least two studies were available for an outcome. Standardized mean differences and corresponding 95 % confidence intervals were reported. The certainty of the evidence was assessed by considering risk of bias, imprecision, inconsistency, and indirectness. The evidence not summarized in the meta-analysis was synthetised.
Findings
Twenty-eight trials (1399 participants) were included in the systematic review and seventeen meta-analyses were performed. From meta-analyses, minimalist shoes lead to greater strength of toes 2 to 5 (confidence interval = 0.02 to 0.76), and foot exercises resulted in lower medial longitudinal arch motion during running (confidence interval = 0.08 to 0.82). The certainty of the evidence was low to very low, mainly due to the limited number of available studies and high risk of bias. The systematic synthesis supported exercises and minimalist shoes to increase foot strength, but was conflicting for muscle sizes. The interventions occasionally modified walking and running biomechanical variables.
Interpretation
Foot exercises and minimalist shoes may be appropriate to increase foot strength and to induce biomechanical changes during dynamic tasks.
期刊介绍:
Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field.
The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management.
A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly.
Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians.
The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time.
Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.