Advancing molecular diagnostics of myotonic dystrophy type 1 using short-read whole genome sequencing.

IF 2.3 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Ingrid Lojova, Marcel Kucharik, Zuzana Pös, Andrej Balaz, Andrea Zatkova, Eva Tothova Tarova, Jaroslav Budis, Ludevit Kadasi, Tomas Szemes, Jan Radvanszky
{"title":"Advancing molecular diagnostics of myotonic dystrophy type 1 using short-read whole genome sequencing.","authors":"Ingrid Lojova, Marcel Kucharik, Zuzana Pös, Andrej Balaz, Andrea Zatkova, Eva Tothova Tarova, Jaroslav Budis, Ludevit Kadasi, Tomas Szemes, Jan Radvanszky","doi":"10.1016/j.mcp.2024.102005","DOIUrl":null,"url":null,"abstract":"<p><p>Myotonic dystrophy type 1 (DM1) is a serious multisystem disorder caused by GCA repeat expansions in the DMPK gene. Early and accurate diagnosis, often requiring reliable DNA-diagnostic techniques, is critical for preventing life-threatening cardiac complications. Clinically, two main diagnostic challenges exist. Firstly, because of overlapping symptomatology with other conditions, conventional DNA-testing methods focusing on DM1 expansion detection ensure diagnostic results only in a small subset of patients, and frequently, further DNA-testing in remaining cases is necessary. Secondly, because of variable symptomatology and age of onset, not all DM1 patients are referred for DM1 genetic testing, leading to unrecognized but at-risk cases. When using conventional methods, the main technical problems are expanded-allele sizing and sensitivity to the presence of sequence interruptions. On a set of 50 individual genomes, including ten DM1 patients, we tested the performance of short-read whole-genome sequencing (WGS), one of the most up-to-date molecular testing methods. We identified all expansion-range DM1 alleles and characterized sequence interruptions in seven expansion-range/premutation-range alleles. Although neither the tested conventional methods, nor WGS allowed expanded-allele sizing, conventional methods provided higher sizing limits for normal-range alleles. Genotyping concordance rate was found to be 95-99 %. WGS was found to be superior in elucidating the sequence structure of the motifs, even if they fall outside the sizing limit (from partial reads). In addition, WGS enables the identification of genetic modifiers in other genes and the detection of alternative diagnoses in DM1-negative patients by extension of the bioinformatic evaluation of the generated data.</p>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":" ","pages":"102005"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.mcp.2024.102005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Myotonic dystrophy type 1 (DM1) is a serious multisystem disorder caused by GCA repeat expansions in the DMPK gene. Early and accurate diagnosis, often requiring reliable DNA-diagnostic techniques, is critical for preventing life-threatening cardiac complications. Clinically, two main diagnostic challenges exist. Firstly, because of overlapping symptomatology with other conditions, conventional DNA-testing methods focusing on DM1 expansion detection ensure diagnostic results only in a small subset of patients, and frequently, further DNA-testing in remaining cases is necessary. Secondly, because of variable symptomatology and age of onset, not all DM1 patients are referred for DM1 genetic testing, leading to unrecognized but at-risk cases. When using conventional methods, the main technical problems are expanded-allele sizing and sensitivity to the presence of sequence interruptions. On a set of 50 individual genomes, including ten DM1 patients, we tested the performance of short-read whole-genome sequencing (WGS), one of the most up-to-date molecular testing methods. We identified all expansion-range DM1 alleles and characterized sequence interruptions in seven expansion-range/premutation-range alleles. Although neither the tested conventional methods, nor WGS allowed expanded-allele sizing, conventional methods provided higher sizing limits for normal-range alleles. Genotyping concordance rate was found to be 95-99 %. WGS was found to be superior in elucidating the sequence structure of the motifs, even if they fall outside the sizing limit (from partial reads). In addition, WGS enables the identification of genetic modifiers in other genes and the detection of alternative diagnoses in DM1-negative patients by extension of the bioinformatic evaluation of the generated data.

短读全基因组测序在1型肌强直性营养不良分子诊断中的高分辨率重复结构分析。
肌强直性营养不良1型(DM1)是由DMPK基因GCA重复扩增引起的一种严重的多系统疾病。早期和准确的诊断,通常需要可靠的dna诊断技术,对于预防危及生命的心脏并发症至关重要。临床上,存在两个主要的诊断挑战。首先,由于与其他疾病的症状重叠,传统的dna检测方法侧重于DM1扩增检测,只能确保一小部分患者的诊断结果,并且经常需要对其余病例进行进一步的dna检测。其次,由于不同的症状和发病年龄,并非所有DM1患者都被转诊进行DM1基因检测,导致未被识别但有风险的病例。当使用传统方法时,主要的技术问题是扩展等位基因大小和对序列中断存在的敏感性。在一组50个个体基因组上,包括10个DM1患者,我们测试了短读全基因组测序(WGS)的性能,这是最新的分子检测方法之一。我们鉴定了所有扩展范围的DM1等位基因,并鉴定了7个扩展范围/预突变范围等位基因的序列中断。尽管传统的测试方法和WGS都不允许扩展等位基因的大小,但传统的方法对正常范围的等位基因提供了更高的大小限制。基因分型一致性为95 ~ 99%。WGS被发现在阐明基序的序列结构方面具有优势,即使它们超出了大小限制(来自部分读取)。此外,WGS能够识别其他基因中的遗传修饰因子,并通过扩展对生成数据的生物信息学评估来检测dm1阴性患者的替代诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Probes
Molecular and Cellular Probes 生物-生化研究方法
CiteScore
6.80
自引率
0.00%
发文量
52
审稿时长
16 days
期刊介绍: MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信