A Generalized Multi-Detector Combination Approach for Differential Item Functioning Detection.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Shan Huang, Hidetoki Ishii
{"title":"A Generalized Multi-Detector Combination Approach for Differential Item Functioning Detection.","authors":"Shan Huang, Hidetoki Ishii","doi":"10.1177/01466216241310602","DOIUrl":null,"url":null,"abstract":"<p><p>Many studies on differential item functioning (DIF) detection rely on single detection methods (SDMs), each of which necessitates specific assumptions that may not always be validated. Using an inappropriate SDM can lead to diminished accuracy in DIF detection. To address this limitation, a novel multi-detector combination (MDC) approach is proposed. Unlike SDMs, MDC effectively evaluates the relevance of different SDMs under various test conditions and integrates them using supervised learning, thereby mitigating the risk associated with selecting a suboptimal SDM for DIF detection. This study aimed to validate the accuracy of the MDC approach by applying five types of SDMs and four distinct supervised learning methods in MDC modeling. Model performance was assessed using the area under the curve (AUC), which provided a comprehensive measure of the ability of the model to distinguish between classes across all threshold levels, with higher AUC values indicating higher accuracy. The MDC methods consistently achieved higher average AUC values compared to SDMs in both matched test sets (where test conditions align with the training set) and unmatched test sets. Furthermore, MDC outperformed all SDMs under each test condition. These findings indicated that MDC is highly accurate and robust across diverse test conditions, establishing it as a viable method for practical DIF detection.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216241310602"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216241310602","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many studies on differential item functioning (DIF) detection rely on single detection methods (SDMs), each of which necessitates specific assumptions that may not always be validated. Using an inappropriate SDM can lead to diminished accuracy in DIF detection. To address this limitation, a novel multi-detector combination (MDC) approach is proposed. Unlike SDMs, MDC effectively evaluates the relevance of different SDMs under various test conditions and integrates them using supervised learning, thereby mitigating the risk associated with selecting a suboptimal SDM for DIF detection. This study aimed to validate the accuracy of the MDC approach by applying five types of SDMs and four distinct supervised learning methods in MDC modeling. Model performance was assessed using the area under the curve (AUC), which provided a comprehensive measure of the ability of the model to distinguish between classes across all threshold levels, with higher AUC values indicating higher accuracy. The MDC methods consistently achieved higher average AUC values compared to SDMs in both matched test sets (where test conditions align with the training set) and unmatched test sets. Furthermore, MDC outperformed all SDMs under each test condition. These findings indicated that MDC is highly accurate and robust across diverse test conditions, establishing it as a viable method for practical DIF detection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信