From setbacks to success: lessons from the journey of RSV vaccine development.

Q2 Medicine
Therapeutic Advances in Vaccines and Immunotherapy Pub Date : 2024-12-19 eCollection Date: 2024-01-01 DOI:10.1177/25151355241308305
Victor M Cnossen, Rogier P van Leeuwen, Natalie I Mazur, Charlotte Vernhes, Wouter Ten Voorde, Jacobus Burggraaf, Saco J de Visser, Meta Roestenberg, Ingrid M C Kamerling
{"title":"From setbacks to success: lessons from the journey of RSV vaccine development.","authors":"Victor M Cnossen, Rogier P van Leeuwen, Natalie I Mazur, Charlotte Vernhes, Wouter Ten Voorde, Jacobus Burggraaf, Saco J de Visser, Meta Roestenberg, Ingrid M C Kamerling","doi":"10.1177/25151355241308305","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory syncytial virus (RSV) causes high worldwide infant mortality, as well as a high disease burden in the elderly. Efforts in vaccine development over the past 60 years have recently delivered three approved vaccines and two monoclonal antibodies (mAbs). Looking back at the eventful history of RSV vaccine development, several factors can be identified that have hampered the developmental pathway, including the occurrence of enhanced RSV disease (ERD) in the first vaccine attempt and the difficulty in characterizing and stabilizing the pre-fusion F protein as a vaccine target. Moreover, the need for large trials to test vaccine efficacy, usually done late in development, and the lack of a correlate of protection (CoP) result in significant uncertainties in RSV vaccine development. The use of controlled human infection models (CHIMs) may provide a solution for some of these problems: through swift, cost-efficient and closely monitored assessment of vaccine safety and efficacy in early clinical phases, vaccines can either 'fail fast' or show results supporting further investments. Moreover, CHIMs facilitate the assessment of disease and could assist in the identification of a CoP supporting late-stage development. Although some factors may affect translatability to real-world vaccine efficacy, CHIMs can support the clinical development pathway in various ways. We advocate for, and demonstrate, a conceptual and rational design of RSV vaccine development. Assessing protective efficacy early on would result in the most cost-efficient pathway and identification of target populations should be done as early as possible. For RSV, elderly individuals and people in low- and middle-income countries are high-impact populations for RSV prevention. While RSV immunization is now available in certain regions, global access is not accomplished yet, and worldwide prevention does not seem within reach. Quick and cost-effective assessments of candidates currently in the pipeline could contribute to future successes in the battle against RSV.</p>","PeriodicalId":33285,"journal":{"name":"Therapeutic Advances in Vaccines and Immunotherapy","volume":"12 ","pages":"25151355241308305"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Vaccines and Immunotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25151355241308305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory syncytial virus (RSV) causes high worldwide infant mortality, as well as a high disease burden in the elderly. Efforts in vaccine development over the past 60 years have recently delivered three approved vaccines and two monoclonal antibodies (mAbs). Looking back at the eventful history of RSV vaccine development, several factors can be identified that have hampered the developmental pathway, including the occurrence of enhanced RSV disease (ERD) in the first vaccine attempt and the difficulty in characterizing and stabilizing the pre-fusion F protein as a vaccine target. Moreover, the need for large trials to test vaccine efficacy, usually done late in development, and the lack of a correlate of protection (CoP) result in significant uncertainties in RSV vaccine development. The use of controlled human infection models (CHIMs) may provide a solution for some of these problems: through swift, cost-efficient and closely monitored assessment of vaccine safety and efficacy in early clinical phases, vaccines can either 'fail fast' or show results supporting further investments. Moreover, CHIMs facilitate the assessment of disease and could assist in the identification of a CoP supporting late-stage development. Although some factors may affect translatability to real-world vaccine efficacy, CHIMs can support the clinical development pathway in various ways. We advocate for, and demonstrate, a conceptual and rational design of RSV vaccine development. Assessing protective efficacy early on would result in the most cost-efficient pathway and identification of target populations should be done as early as possible. For RSV, elderly individuals and people in low- and middle-income countries are high-impact populations for RSV prevention. While RSV immunization is now available in certain regions, global access is not accomplished yet, and worldwide prevention does not seem within reach. Quick and cost-effective assessments of candidates currently in the pipeline could contribute to future successes in the battle against RSV.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Therapeutic Advances in Vaccines and Immunotherapy
Therapeutic Advances in Vaccines and Immunotherapy Medicine-Pharmacology (medical)
CiteScore
5.10
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信