A novel model based on clinical and computed tomography (CT) indices to predict the risk factors of postoperative major complications in patients undergoing pancreaticoduodenectomy.

IF 2.3 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES
PeerJ Pub Date : 2024-12-19 eCollection Date: 2024-01-01 DOI:10.7717/peerj.18753
Jiaqi Wang, Kangjing Xu, Changsheng Zhou, Xinbo Wang, Junbo Zuo, Chenghao Zeng, Pinwen Zhou, Xuejin Gao, Li Zhang, Xinying Wang
{"title":"A novel model based on clinical and computed tomography (CT) indices to predict the risk factors of postoperative major complications in patients undergoing pancreaticoduodenectomy.","authors":"Jiaqi Wang, Kangjing Xu, Changsheng Zhou, Xinbo Wang, Junbo Zuo, Chenghao Zeng, Pinwen Zhou, Xuejin Gao, Li Zhang, Xinying Wang","doi":"10.7717/peerj.18753","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postoperative complications are prone to occur in patients after radical pancreaticoduodenectomy (PD). This study aimed to construct and validate a model for predicting postoperative major complications in patients after PD.</p><p><strong>Methods: </strong>The clinical data of 360 patients who underwent PD were retrospectively collected from two centers between January 2019 and December 2023. Visceral adipose volume (VAV) and subcutaneous adipose volume (SAV) were measured using three-dimensional (3D) computed tomography (CT) reconstruction. According to the Clavien-Dindo classification system, the postoperative complications were graded. Subsequently, a predictive model was constructed based on the results of least absolute shrinkage and selection operator (LASSO) multivariate logistic regression analysis and stepwise (stepAIC) selection. The nomogram was internally validated by the training and test cohort. The discriminatory ability and clinical utility of the nomogram were evaluated by area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA).</p><p><strong>Results: </strong>The major complications occurred in 13.3% (<i>n</i> = 48) of patients after PD. The nomogram revealed that high VAV/SAV, high system inflammation response index (SIRI), high triglyceride glucose-body mass index (TyG-BMI), low prognostic nutritional index (PNI) and CA199 ≥ 37 were independent risk factors for major complications. The C-index of this model was 0.854 (95%CI [0.800-0.907]), showing excellent discrimination. The calibration curve demonstrated satisfactory concordance between nomogram predictions and actual observations. The DCA curve indicated the substantial clinical utility of the nomogram.</p><p><strong>Conclusion: </strong>The model based on clinical and CT indices demonstrates good predictive performance and clinical benefit for major complications in patients undergoing PD.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"12 ","pages":"e18753"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18753","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Postoperative complications are prone to occur in patients after radical pancreaticoduodenectomy (PD). This study aimed to construct and validate a model for predicting postoperative major complications in patients after PD.

Methods: The clinical data of 360 patients who underwent PD were retrospectively collected from two centers between January 2019 and December 2023. Visceral adipose volume (VAV) and subcutaneous adipose volume (SAV) were measured using three-dimensional (3D) computed tomography (CT) reconstruction. According to the Clavien-Dindo classification system, the postoperative complications were graded. Subsequently, a predictive model was constructed based on the results of least absolute shrinkage and selection operator (LASSO) multivariate logistic regression analysis and stepwise (stepAIC) selection. The nomogram was internally validated by the training and test cohort. The discriminatory ability and clinical utility of the nomogram were evaluated by area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA).

Results: The major complications occurred in 13.3% (n = 48) of patients after PD. The nomogram revealed that high VAV/SAV, high system inflammation response index (SIRI), high triglyceride glucose-body mass index (TyG-BMI), low prognostic nutritional index (PNI) and CA199 ≥ 37 were independent risk factors for major complications. The C-index of this model was 0.854 (95%CI [0.800-0.907]), showing excellent discrimination. The calibration curve demonstrated satisfactory concordance between nomogram predictions and actual observations. The DCA curve indicated the substantial clinical utility of the nomogram.

Conclusion: The model based on clinical and CT indices demonstrates good predictive performance and clinical benefit for major complications in patients undergoing PD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ
PeerJ MULTIDISCIPLINARY SCIENCES-
CiteScore
4.70
自引率
3.70%
发文量
1665
审稿时长
10 weeks
期刊介绍: PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信