Sleep deprivation activated AMPK/FOXO3a signaling mediates pineal autophagy impairment to reduce melatonin secretion in CUMS + SD rats leading to depression combined with insomnia.

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Zirong Li, Yi Shu, Qian Liu, Deguo Liu, Sheng Xie, Mingjun Wei, Lidan Lan, Xinyi Yang
{"title":"Sleep deprivation activated AMPK/FOXO3a signaling mediates pineal autophagy impairment to reduce melatonin secretion in CUMS + SD rats leading to depression combined with insomnia.","authors":"Zirong Li, Yi Shu, Qian Liu, Deguo Liu, Sheng Xie, Mingjun Wei, Lidan Lan, Xinyi Yang","doi":"10.1016/j.neulet.2024.138091","DOIUrl":null,"url":null,"abstract":"<p><p>This study established an animal model of comorbid depression and insomnia by combining chronic unpredictable mild stress (CUMS) with sleep deprivation (SD). The pathogenesis of comorbid depression and insomnia may be associated with impaired AMPK/FOXO3a signaling, which mediates autophagy inhibition, leading to decreased pineal melatonin secretion. The findings revealed that CUMS + SD rats exhibited more pronounced depression-like behaviors, sleep disorders, increased central oxidative stress, and exacerbated neuroinflammation, accompanied by reduced levels of 5-hydroxytryptophan (5-HT) and melatonin in the pineal gland. Notably, further investigations revealed that impaired mitochondrial autophagy in the pineal gland is closely linked to the significant suppression of AMPK/FOXO3a signaling. The combined intervention of venlafaxine and melatonin effectively ameliorated the impaired mitochondrial autophagy in the pineal gland of CUMS + SD rats and stimulated melatonin secretion. Consequently, the study proposes that dysfunctional mitochondrial autophagy regulated by the AMPK/FOXO3a pathway can influence melatonin secretion, thereby playing a pivotal role in the pathogenesis of depression combined with insomnia.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138091"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2024.138091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study established an animal model of comorbid depression and insomnia by combining chronic unpredictable mild stress (CUMS) with sleep deprivation (SD). The pathogenesis of comorbid depression and insomnia may be associated with impaired AMPK/FOXO3a signaling, which mediates autophagy inhibition, leading to decreased pineal melatonin secretion. The findings revealed that CUMS + SD rats exhibited more pronounced depression-like behaviors, sleep disorders, increased central oxidative stress, and exacerbated neuroinflammation, accompanied by reduced levels of 5-hydroxytryptophan (5-HT) and melatonin in the pineal gland. Notably, further investigations revealed that impaired mitochondrial autophagy in the pineal gland is closely linked to the significant suppression of AMPK/FOXO3a signaling. The combined intervention of venlafaxine and melatonin effectively ameliorated the impaired mitochondrial autophagy in the pineal gland of CUMS + SD rats and stimulated melatonin secretion. Consequently, the study proposes that dysfunctional mitochondrial autophagy regulated by the AMPK/FOXO3a pathway can influence melatonin secretion, thereby playing a pivotal role in the pathogenesis of depression combined with insomnia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience Letters
Neuroscience Letters 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
408
审稿时长
50 days
期刊介绍: Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信