{"title":"High-light and nutrient interactions drive carbohydrate and proton pump dynamics in Agastache rugosa (Fisch. & C.A.Mey.) Kuntze","authors":"Khairul Azree Rosli , Azizah Misran , Latifah Saiful Yazan , Puteri Edaroyati Megat Wahab","doi":"10.1016/j.plaphy.2024.109374","DOIUrl":null,"url":null,"abstract":"<div><div><em>Agastache rugosa</em>, a perennial herb native to temperate and subtropical regions, shows remarkable adaptive strategies when exposed to varying light and nutrient conditions in tropical environments. Our study reveals new insights into the crosstalk mechanisms involving carbohydrate homeostasis, biomass allocation, and nutrient acquisition in <em>A. rugosa</em> under different environmental conditions. Treatments were two light levels; HL (high-light, 0% shade) and LL (low-light, 50% shade), and four nutrient rates; NPK1 (40 mg kg<sup>−1</sup>), NPK2 (80 mg kg<sup>−1</sup>), NPK3 (120 mg kg<sup>−1</sup>) and NPK4 (160 mg kg<sup>−1</sup>). High-light coupled with increasing nutrient levels (HL-NPK3 and HL-NPK4) promoted biomass production via increased carbon assimilation, associated with higher soluble sugar levels and higher phosphorus and potassium uptake mediated by the upregulation of plasma membrane H<sup>+</sup>-ATPase. Maximum carbohydrate accumulation occurred at high-light and the lowest nutrient levels (HL-NPK1), coinciding with increased nitrogen uptake and the drastically high leaf nitrogen concentration. This response was preceded by the upregulation of acid phosphatase and sucrose phosphate synthase, suggesting a compensatory mechanism to maintain nutrient and carbohydrate reserves for critical metabolic processes. Starch increase was more apparent under low-light and higher nutrient levels (LL-NPK3 and LL-NPK4), relative to invertase downregulation, indicating a shift towards carbohydrate storage rather than utilization. These findings underscore the complex interplay between sugar signaling, nutrient sensing, enzymatic actions, and proton pump activity in modulating plant adaptation to varying environmental conditions. This study also highlights the importance of understanding how non-model medicinal species like <em>A. rugosa</em> reprogram their metabolism and resource allocation in response to environmental changes.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"Article 109374"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824010428","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Agastache rugosa, a perennial herb native to temperate and subtropical regions, shows remarkable adaptive strategies when exposed to varying light and nutrient conditions in tropical environments. Our study reveals new insights into the crosstalk mechanisms involving carbohydrate homeostasis, biomass allocation, and nutrient acquisition in A. rugosa under different environmental conditions. Treatments were two light levels; HL (high-light, 0% shade) and LL (low-light, 50% shade), and four nutrient rates; NPK1 (40 mg kg−1), NPK2 (80 mg kg−1), NPK3 (120 mg kg−1) and NPK4 (160 mg kg−1). High-light coupled with increasing nutrient levels (HL-NPK3 and HL-NPK4) promoted biomass production via increased carbon assimilation, associated with higher soluble sugar levels and higher phosphorus and potassium uptake mediated by the upregulation of plasma membrane H+-ATPase. Maximum carbohydrate accumulation occurred at high-light and the lowest nutrient levels (HL-NPK1), coinciding with increased nitrogen uptake and the drastically high leaf nitrogen concentration. This response was preceded by the upregulation of acid phosphatase and sucrose phosphate synthase, suggesting a compensatory mechanism to maintain nutrient and carbohydrate reserves for critical metabolic processes. Starch increase was more apparent under low-light and higher nutrient levels (LL-NPK3 and LL-NPK4), relative to invertase downregulation, indicating a shift towards carbohydrate storage rather than utilization. These findings underscore the complex interplay between sugar signaling, nutrient sensing, enzymatic actions, and proton pump activity in modulating plant adaptation to varying environmental conditions. This study also highlights the importance of understanding how non-model medicinal species like A. rugosa reprogram their metabolism and resource allocation in response to environmental changes.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.