Microbial enzymes as powerful natural anti-biofilm candidates.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lamiaa A Al-Madboly, Asmaa Aboulmagd, Mohamed Abd El-Salam, Ivan Kushkevych, Rasha M El-Morsi
{"title":"Microbial enzymes as powerful natural anti-biofilm candidates.","authors":"Lamiaa A Al-Madboly, Asmaa Aboulmagd, Mohamed Abd El-Salam, Ivan Kushkevych, Rasha M El-Morsi","doi":"10.1186/s12934-024-02610-y","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms. We emphasize the potential of microbial enzymatic approaches, particularly focusing on glycosidases, proteases, and deoxyribonucleases, which can disrupt biofilm matrices effectively. We also delve into the importance of enzymes such as cellobiose dehydrogenase, which disrupts biofilms by degrading polysaccharides. This enzyme is mainly sourced from Aspergillus niger and Sclerotium rolfsii, with optimized production strategies enhancing its efficacy. Additionally, we explore levan hydrolase, alginate lyase, α-amylase, protease, and lysostaphin as potent antibiofilm agents, discussing their microbial origins and production optimization strategies. These enzymes offer promising avenues for combating biofilm-related challenges in healthcare, environmental, and industrial settings. Ultimately, enzymatic strategies present environmentally friendly solutions with high potential for biofilm management and infection control.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"343"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02610-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms. We emphasize the potential of microbial enzymatic approaches, particularly focusing on glycosidases, proteases, and deoxyribonucleases, which can disrupt biofilm matrices effectively. We also delve into the importance of enzymes such as cellobiose dehydrogenase, which disrupts biofilms by degrading polysaccharides. This enzyme is mainly sourced from Aspergillus niger and Sclerotium rolfsii, with optimized production strategies enhancing its efficacy. Additionally, we explore levan hydrolase, alginate lyase, α-amylase, protease, and lysostaphin as potent antibiofilm agents, discussing their microbial origins and production optimization strategies. These enzymes offer promising avenues for combating biofilm-related challenges in healthcare, environmental, and industrial settings. Ultimately, enzymatic strategies present environmentally friendly solutions with high potential for biofilm management and infection control.

微生物酶是强大的天然抗生物膜候选物。
细菌生物膜带来了重大挑战,从医疗保健相关感染到工业系统中的生物污垢,在全球范围内造成重大健康影响和经济损失。经典的抗菌方法往往不能根除生物膜内的微生物群落,需要创新的方法。本文综述了生物膜的结构、形成和作用,强调了胞外多糖在生物膜稳定性和抗性机制中的重要作用。我们强调微生物酶方法的潜力,特别是关注糖苷酶、蛋白酶和脱氧核糖核酸酶,它们可以有效地破坏生物膜基质。我们还深入研究了酶的重要性,如纤维素二糖脱氢酶,它通过降解多糖来破坏生物膜。该酶主要来源于黑曲霉和罗尔夫菌核菌,通过优化生产策略提高了其功效。此外,我们探索了作为有效的抗生物膜剂的李凡水解酶、海藻酸解酶、α-淀粉酶、蛋白酶和溶葡萄球菌素,讨论了它们的微生物来源和生产优化策略。这些酶为医疗保健、环境和工业环境中与生物膜相关的挑战提供了有希望的途径。最终,酶的策略为生物膜管理和感染控制提供了具有高潜力的环保解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信